Nita Merlina
Universitas Nusa Mandiri

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

Sistem Pendukung Keputusan Pemilihan Penerima Beasiswa Pendidikan Dengan Menggunakan Metode Weighted Product Di Yatim Mandiri Arfita Adikvika; Nita Merlina; Nissa Almira Mayangky
Indonesian Journal on Software Engineering (IJSE) Vol 7, No 2 (2021): IJSE 2021
Publisher : Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/ijse.v7i2.11154

Abstract

AbstrakPemberian beasiswa dimaksudkan sebagai bantuan ekonomi guna meringankan beban biaya anak yang hendak melanjutkan pendidikan. Setiap lembaga pendidikan atau yayasan sosial memiliki program beasiswa. Begitu juga dengan Yatim Mandiri Rawamangun yang memiliki program beasiswa pendidikan yang ditujukan kepada anak yang mampu maupun yang kurang mampu. Dalam pemberian beasiswa diperlukan kriteria-kriteria yang telah ditetapkan sebagai pembanding untuk melakukan seleksi. Untuk membantu pihak Yatim Mandiri Rawamangun menentukan anak yang berhak menerima beasiswa, maka digunakan sebuah Sistem Pendukung Keputusan (SPK) yaitu metode Weighted Product sebagai salah satu metode pengambilan keputusan yang digunakan untuk mencari nilai yang paling optimal dari sejumlah anak dengan kriteria tertentu. Hasil penelitian dengan metode weighted product terhadap data sampel anak-anak di Yatim Mandiri Rawamangun untuk tahun 2021 menunjukkan Alzahra Sofyan Putri sebagai nilai paling optimal di peringkat pertama dengan nilai 0.03153 dan layak menerima beasiswa bersama 30 anak di peringkat lain yang diprioritaskan dalam pemberian beasiswa. Dengan digunakannya metode weighted product dapat membantu pihak Yatim Mandiri Rawamangun menentukan calon penerima beasiswa.Kata kunci: Sistem Pendukung Keputusan (SPK), Metode Weighted Product,Penerima BeasiswaAbstractThe provision of scholarships is intended as economic assistance to ease the burden of costs for children who want to continue their education. Every educational institution or social foundation has a scholarship program. Likewise with Yatim Mandiri Rawamangun has an educational scholarship program aimed at children who can afford it and those who are less fortunate. In awarding scholarships, it is necessary to have established criteria as a comparison to make the selection. To help Yatim Mandiri Rawamangun determine which children are eligible to receive scholarships, a Decision Support System (DSS) is used. The Weighted Product method is one of the decision-making methods used to find the most optimal value from several children with certain criteria. The results of the research using the weighted product method on the sample data of children at Yatim Mandiri Rawamangun for 2021 show Alzahra Sofyan Putri as the most optimal value in the first place with a value of 0.03153 and eligible to receive scholarships with 30 children in other ranks that are prioritized in providing scholarships. By using the weighted product method, it can help Yatim Mandiri Rawamangun determine prospective scholarship recipients. Keywords: Decision Support System (DSS), Weighted Product Method, Scholarship grantee 
Pemilihan Dokter Umum Terbaik Di Aplikasi Good Doctor Menggunakan Metode Weight Product Rani Risdiawati; Nita Merlina; Nissa Almira Mayangky
Indonesian Journal on Software Engineering (IJSE) Vol 8, No 1 (2022): IJSE 2022
Publisher : Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/ijse.v8i1.11437

Abstract

Abstrak Dalam masa pandemi fasilitas kesehatan, obat-obatan, pegawai kesehatan sangat dibutuhkan. Baik secara offline maupun online. Secara offline dengan mendatangi langsung dan secara online bisa melalui smartphone dan didukung dengan aplikasi telemedicine. Aplikasi telemedicine salah satunya adalah aplikasi Good Doctor . Namun apabila pasien atau pengguna aplikasi ketika akan melakukan konsultasi dengan dokter menemukan kebimbangan dalam memilih dokter maka perlu penelitian untuk membantu merekomendasikan dokter yang terdapat di dalam aplikasi Good Doctor . Pemberian keputusan didukung dengan menggunakan sistem pendukung keputusan yang mana keputusan berasal dari sistem dan juga user. Sistem pendukung keputusan dalam penelitian ini dilakukan dengan menggunakan metode weight product, dengan kriteria profil dokter yaitu pengalaman kerja dokter, rating dokter, harga konsultasi, jenis kelamin, jumlah konsultasi yang telah dilakukan, jumlah kepuasan pelanggan, sikap dokter, nasihat dokter, kecepatan response, dan durasi antrian. Setiap kriteria pemilihan memiliki peranan yang sangat penting sehingga apabila salah satu kriteria tidak terisi atau dalam keadaan null maka hasil keseluruhan akan bernilai nol. Hasil dari penelitian ini adalah peringkat atau rangking yang dijadikan sebuah rekomendasi kepada pengguna aplikasi Good Doctor  agar pengguna tidak perlu merasa kebingungan untuk memenuhi keinginan dan kebutuhan dokter umum di aplikasi Good Doctor . Selain itu penelitian ini juga hasilnya akan memberikan penghargaan terhadap dokter umum di aplikasi Good Doctor  atas kinerjanya dalam melakukan pelayanan kesehatan kepada pengguna aplikasi. Kata Kunci : sistem pendukung keputusan, weight product, Good Doctor , kesehatan, dokter. Abstract  During a pandemic, health facilities, medicines, and health workers are very much needed. Both offline and online.by Offline visiting directly and online via a smartphone and supported by telemedicine.applications telemedicine is the Good Doctor . However, if the patient or application user when going to consult with a doctor finds doubts in choosing a doctor, research is needed to help recommend doctors contained in the Good Doctor . Decision making is supported by using a decision support system where decisions come from the system and also the user. The decision support system in this study was carried out using the weight product, with the criteria for a doctor's profile, namely doctor's work experience, doctor rating, consultation price, gender, number of consultations that have been carried out, total customer satisfaction, doctor's attitude, doctor's advice, speed of response, and queue duration. Each selection criteria has a very important role so that if one of the criteria is not filled or is in a null state, the overall result will be zero. The results of this study are ratings or rankings that are used as a recommendation to users of the Good Doctor  so that users do not need to feel confused about fulfilling the wishes and needs of general practitioners in the Good Doctor . In addition, this research also results in giving awards to general practitioners in the Good Doctor  for their performance in providing health services to application users. Keywords: Decision support system, weight product, Good Doctor , health, doctor.
Pelatihan Desain UI/UX Mobile Apps Untuk Remaja Masjid Jakarta Islamic Centre Menggunakan Figma Nurmalasari Nurmalasari; Riyan Latifahul Hasanah; Eni Heni Hermaliani; Nita Merlina
Literasi: Jurnal Pengabdian Masyarakat dan Inovasi Vol 3 No 1 (2023)
Publisher : Pengelola Jurnal Politeknik Negeri Ketapang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58466/literasi.v3i1.848

Abstract

Jakarta Islamic Center (JIC) is a local government institution that includes elements of local government and society with main tasks including human resources development, information and communication and business development. In the information and communication function, JIC requires a medium that can be used for broadcasting Islamic proselytizing optimally and managed professionally with an attractive and up to date appearance. Therefore, a team of lecturers from the Faculty of Information Technology, Nusa Mandiri University (FTI UNM) conducted community service in the form of training on how to design UI / UX with figma on mobile apps for JIC mosque teenagers. The training was held on October 15, 2022 at the Damai campus with 14 participants through presentations, demonstrations, discussions and questions and answers. The results of the research can equip new knowledge and knowledge for participants so that they have skills in creating and managing information and communication media in the form of mobile apps with attractive designs and in accordance with the needs of visitors.
Pemilihan Siswa Berprestasi Menggunakan Analytical Hierarchy Process Pada SMPN 24 Jakarta Isti Kharoh; Nita Merlina; Nissa Almira Mayangky
(JurTI) Jurnal Teknologi Informasi Vol 7, No 1 (2023): JUNI 2023
Publisher : Universitas Asahan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36294/jurti.v7i1.3280

Abstract

Institusi pendidikan tentunya selalu berupaya untuk dapat memberikan pelayanan yang terbaik bagi siswa/siswi, orang tua/wali khususnya serta bagi masyarakat pada umumnya. Salah satu layanan yang secara berkala dilakukan Sekolah Menengah Pendidikan Negeri (SMPN) 24 Jakarta adalah pemberian penghargaan kepada siswa yang berprestasi. Pemberian penghargaan dilakukan di setiap akhir Tahun Pelajaran. Permasalahan yang terjadi adalah pihak sekolah hanya berpatokan pada data prestasi akademik saja, padahal kriteria non-akademik juga dapat menjadi dasar penentuan. Selain itu proses penentuan siswa berprestasi masih dilakukan secara konvensional sehingga keputusan dalam menentukan siswa berprestasi seringkali dihadapkan pada kondisi yang dapat menjadikan keputusan tersebut terkesan tidak proporsional. Sehingga diperlukan suatu alat bantu berupa aplikasi yang dapat membantu pihak manajemen dalam proses pengambilan keputusan seperti Analytical Hierarchy Process (AHP). Berdasarkan hasil kuesioner dan perhitungan Analytical Hierarchy Process (AHP) terdapat nilai Eigen vector tertinggi yaitu kriteria Nilai Rapor dengan bobot 0,44 (44%) hal ini menandakan kriteria tersebut memiliki tingkat kepentingan yang lebih besar dibandingkan dengan kriteria nilai sikap 0,42 (42%) dan nilai ekskul 0,14 (14%). Hasil pengolahan data dengan menggunakan aplikasi expert choice menunjukan bahwa alternatif atas nama Radin Akhtar Alvito lebih unggul dari pada I Vena Hawa Tuanaya dari Nilai Sikap, sementara untuk Nilai Rapor dan Nilai Ekskul kedua alternatif ini memiliki bobot nilai yang sama.
ANALYZING THE COMPARATIVE METHODS OF PREWITT, ROBINSON, KRISCH AND ROBERTS IN DETECTING THE EDGES OF RICE LEAVES Nissa Almira Mayangky; Nita Merlina; Arfhan Prasetyo; Dea Amelia; Marcella Irsictia; Mutmainah Putri
Jurnal Techno Nusa Mandiri Vol 21 No 1 (2024): Techno Nusa Mandiri : Journal of Computing and Information Technology Period of
Publisher : Lembaga Penelitian dan Pengabdian Pada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/techno.v21i1.5509

Abstract

This research explores the vital role of rice in Indonesia as a staple food and primary source of income for farmers. Efforts are being made to increase rice production to meet the growing demand. The study focuses on object edge detection in image analysis, evaluating methods like Prewitt, Robinson, Krisch, and Roberts. Digital imaging plays a crucial part in visually presenting information, and image processing improves image quality for human and machine recognition. Detecting object edges, particularly in rice leaf images, is essential for computer inspection. The experiment on fifteen rice leaf images shows that the Krisch method performs better in edge detection, with a 52% average accuracy and smoothness. Other methods, such as Prewitt (6%), Robinson (11%), and Roberts (14%), have lower accuracy rates. These findings provide a foundation for enhancing edge detection in rice leaf image analysis. The study also emphasizes the need for refining classification models. Overall, this research provides insights into the effectiveness of edge detection methods in rice leaf image analysis.
UTILIZING RETRIEVAL-AUGMENTED GENERATION IN LARGE LANGUAGE MODELS TO ENHANCE INDONESIAN LANGUAGE NLP Herdian Tohir; Nita Merlina; Muhammad Haris
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol. 10 No. 2 (2024): JITK Issue November 2024
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/jitk.v10i2.5916

Abstract

The improvement of Large Language Models (LLM) such as ChatGPT through Retrieval-Augmented Generation (RAG) techniques has urgency in the development of natural language translation technology and dialogue systems. LLMs often experience obstacles in addressing special requests that require information outside the training data. This study aims to discuss the use of Retrieval-Augmented Generation (RAG) on large-scale language models to improve the performance of Natural Language Processing (NLP) in Indonesian, which has so far been poorly supported by high-quality data and to overcome the limitations of traditional language models in understanding the context of Indonesian better. The method used is a combination of retrieval capabilities (external information search) with generation (text generation), where the model utilizes broader and more structured basic data through the retrieval process to produce more accurate and relevant text. The data used includes the Indonesian corpus of the 30 Juz Quran translation into Indonesian. The results of the trial show that the RAG approach significantly improves the performance of the model in various NLP tasks, including token usage optimization, text classification, and context understanding, by increasing the accuracy and relevance of the results