Claim Missing Document
Check
Articles

Found 13 Documents
Search

PENGGUNAAN METODE KLASTERISASI K-MEANS DALAM MENENTUKAN MINAT JURUSAN PADA PROSES PENERIMAAN PESERTA DIDIK BARU Tajrin Tajrin; Kevin Agape Tampubolon; Ronasib Haryanto Syahputra; Piltodam Luhut Gunawan Silaban
Jurnal Tekinkom (Teknik Informasi dan Komputer) Vol 6 No 2 (2023)
Publisher : Politeknik Bisnis Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37600/tekinkom.v6i2.934

Abstract

Al Manar High School is one of the schools under the auspices of the Al Munawwarah Al Manar Islamic Education Foundation which is located in Medan City. Al Munawwarah has several educational units, namely, SMA, Aliyah, SMP, MTs and SD. Where every year Al Manar High School always accepts 200 new students each year. This results in schools not utilizing PPDB data properly. However, data utilization for strategic needs for both promotion and marketing evaluation has not been fully carried out using existing data. One way to make it easier to determine marketing promotion is with the K-Means algorithm. This research will recommend the determination of majors for new students of Al -Manar High School by processing data on written test exam scores on new students, student majors consist of 2 namely Science and Social Sciences while the exam variables carried out consist of mathematics, Indonesian language, English, Science and Social Sciences, this research uses new student data as many as 145 students. With this research, the percentage level of grouping new student majors is higher, based on selected attributes with the K-Means Clustering algorithm. The test resulted in a science grouping of 113 students and a social science grouping of 35 students and resulted in an accuracy rate of 52.9%.
ANALISIS PERFORMANSI METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) DALAM PENGENDALIAN PERSEDIAAN SUSU Tajrin Tajrin; Hendra Hendra; Juan Fernando Gurning
Jurnal Tekinkom (Teknik Informasi dan Komputer) Vol 7 No 1 (2024)
Publisher : Politeknik Bisnis Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37600/tekinkom.v7i1.1222

Abstract

This study aims to address the issue of milk inventory control at PT. Indodairy Continental by applying the Autoregressive Integrated Moving Average (ARIMA) method. The uncertainty in milk demand, influenced by changes in consumer consumption patterns and market fluctuations, poses challenges in accurate production and distribution planning. This research uses historical milk sales data from the past several years to build an ARIMA model. The data undergoes several steps, including data collection and plotting, stationarity testing using ACF and PACF, differencing, and parameter estimation of the ARIMA model. The analysis results indicate that the data is stationary, and the ARIMA (1,0,0) model is selected as the best model based on the significance test. This model is used to forecast milk sales for the next six months. The predictions indicate an increase in monthly sales, allowing the company to optimize production and distribution processes, reduce costs, and improve customer satisfaction.
Analisis Kepuasan Pelanggan Terhadap Bengkel Ahass Karya Servis Di kota Medan Menggunakan Metode K-Means Clustering Tajrin Tajrin; Muhammad Said; Adinda Ruth Simwani Sinaga
Management Studies and Entrepreneurship Journal (MSEJ) Vol. 6 No. 4 (2025): Management Studies and Entrepreneurship Journal (MSEJ)
Publisher : Yayasan Pendidikan Riset dan Pengembangan Intelektual (YRPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37385/msej.v6i4.8036

Abstract

AHASS Karya Servis menghadapi penurunan kepuasan dan loyalitas pelanggan, sehingga penelitian ini menggunakan metode K-Means Clustering untuk mengelompokkan pelanggan berdasarkan persepsi terhadap lima dimensi kualitas layanan guna menyusun strategi peningkatan pelayanan yang lebih tepat sasaran. Penelitian ini menggunakan metode K Means dengan menggunakan 324 resnponden. Berdasarkan hasil analisis menggunakan metode K-Means Clustering, pelanggan AHASS Karya Servis berhasil dikelompokkan ke dalam dua klaster utama berdasarkan tingkat kepuasan terhadap layanan yang diberikan; klaster pertama menunjukkan kepuasan yang tinggi pada aspek kualitas produk dan pelayanan kasir, sementara klaster kedua lebih menekankan kenyamanan fasilitas seperti ruang tunggu dan toilet, sehingga hasil pengelompokan ini dapat dijadikan dasar bagi bengkel untuk menyusun strategi pelayanan yang lebih tepat dan sesuai dengan karakteristik masing-masing segmen pelanggan. Kesimpulan dari penelitian ini adalah bahwa metode K-Means Clustering efektif dalam mengelompokkan pelanggan AHASS Karya Servis berdasarkan tingkat kepuasan mereka, yang terbagi menjadi dua klaster utama dengan preferensi berbeda, sehingga hasil ini dapat dimanfaatkan bengkel untuk merancang strategi peningkatan layanan yang lebih tepat sasaran dan sesuai dengan kebutuhan setiap segmen pelanggan.