Claim Missing Document
Check
Articles

Found 28 Documents
Search

Komparasi Algoritma WOA, MFO dan Genetic pada Optimasi Evolutionary Neural Network dalam Menyelesaikan Permainan 2048 Hendrawan Armanto; Kevin Setiabudi; C Pickerling
Jurnal Inovasi Teknologi dan Edukasi Teknik Vol. 1 No. 9 (2021)
Publisher : Universitas Ngeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (483.272 KB)

Abstract

Neural network optimization using evolutionary algorithms is an interesting research topic. But right now, there are not much research in this topic that focused on Game, especially 2048. The 2048 game is one of the interesting games to study considering that the level of difficulty of this game will increase when the value of the resulting number increases. In addition, this game is also not limited by time but can be played continuously until the game ends. Neural network and tree are 2 architectures that can be used to play 2048 but require a long training time if you want to play well. In this study, this problem was optimized by an evolutionary algorithm (3 algorithms used in this study: Genetic Algorithm, WOA, and MFO). With this optimization, the best weight will be obtained in either the NN or Tree architecture to produce good intelligence in playing 2048. After going through various trials, it is concluded that the combination with the NN architecture is better than the Tree architecture and the WOA and MFO algorithms have succeeded in optimizing the architecture with better than the genetic algorithm. Optimasi neural network menggunakan algoritma evolutionary adalah topik penelitian yang menarik akan tetapi tidak banyak penelitian terkait hal ini yang berfokus pada game terutama game 2048. Game 2048 adalah salah satu game yang menarik untuk diteliti mengingat tingkat kesulitan permainan ini akan semakin meningkat disaat nilai angka yang dihasilkan semakin tinggi. Selain itu, permainan ini juga tidak dibatasi oleh waktu melainkan dapat dimainkan terus menerus hingga permainan berakhir. Neural network dan tree adalah 2 arsitektur yang dapat digunakan untuk memainkan 2048 akan tetapi membutuhkan waktu training yang lama jika ingin bermain dengan baik. Lama training tersebut yang pada penelitian ini dioptimasi oleh algoritma evolutionary (3 algoritma yang digunakan pada penelitian ini: Algoritma Genetic, WOA, dan MFO). Dengan adanya optimasi ini maka akan diperoleh bobot terbaik baik pada arsitektur NN ataupun Tree sehingga menghasilkan kecerdasan yang baik dalam memainkan 2048. Setelah melalui berbagai ujicoba maka disimpulkan bahwa kombinasi dengan arsitektur NN lebih baik dibandingkan dengan arsitektur Tree dan algoritma WOA dan MFO berhasil mengoptimasi arsitektur dengan lebih baik dibandingkan algoritma genetic.
Single Objective Mayfly Algorithm with Balancing Parameter for Multiple Traveling Salesman Problem YOGA DWI WAHYU NUGRAHA; HENDRAWAN ARMANTO; YOSI KRISTIAN
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 3 (2023): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeemi.v5i3.299

Abstract

The Multiple Travelling Salesman Problem (MTSP) is a challenging combinatorial problem that involves multiple salesman visiting a set of cities, each exactly once, starting and ending at the same depot. The aim is to determine the optimal route with minimal cost and node cuts for each salesman while ensuring that at least one salesman visits each city. As the problem is NP-Hard, a single-objective metaheuristic algorithm, called the Mayfly Algorithm, inspired by the collective behavior of mayflies, is employed to solve the problem using the TSPlib95 test data. Since the Mayfly Algorithm employs a single fitness function, a balancing parameter is added to perform multiobjective optimization. Three balancing parameters in the optimization process: SumRoute represents the total cost of all salesmen travelling, StdRoute balances each salesman cost, and StdNodes balances the number of nodes for each salesman. The values of these parameters are determined based on the results of various tests, as they significantly impact the MTSP optimization process. With the appropriate parameter values, the single-objective Mayfly Algorithm can produce optimal solutions and avoid premature convergence. Overall, the Mayfly Algorithm shows promise as a practical approach to solving the MTSP problem. Using multiobjective optimization with balancing parameters enables the algorithm to achieve optimal results and avoid convergence issues. The TSPlib95 dataset provides a robust testing ground for evaluating the algorithm’s effectiveness, demonstrating its ability to solve MTSP effectively with multiple salesman.
Procedural Map Generation for 'Splatted': Enhancing Player Experience through Genetic Algorithms and AI Finite State Machines in a Snowball Throwing Game Hariyanto, Lukky; Armanto, Hendrawan
Intelligent System and Computation Vol 6 No 1 (2024): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v6i1.353

Abstract

Games, a now extremely prevalent form of global entertainment, have emerged as a leading industry in the entertainment media, surpassing other entertainment media such as books, films, and music. However, game development is a complex endeavor, requiring a diverse set of talents to create a decent game for people to enjoy. Some of the talents needed to create a good game is a game designer, which dictates how a player can interact with the world, a writer, which pours a meaningful story inside said world, and a composer, which uses music to elevate the emotions evoked by the game and its events. With that being said, this research aims to streamline the creation process of the game designers, specifically the level designers by focusing on procedural map generation and artificial intelligence to create a map that is in a playable state for the players to play in. Procedural map generation, facilitated by a genetic algorithm inspired by Darwin's evolutionary theory, expedites the level design process. The research explores two types of map generation—tile-based and template-based, each with distinct advantages and disadvantages. Through user acceptance tests and expert-level analysis, it is evident that the genetic algorithm performs effectively, achieving a noteworthy level of player satisfaction.
Kecerdasan Buatan Berbasis Monte-Carlo Tree Search untuk Permainan Shogi pada Android Pickerling, Pickerling; Armanto, Hendrawan; Daniel, Daniel
Jurnal Informatika dan Sistem Informasi Vol. 7 No. 1 (2021): Jurnal Informatika dan Sistem Informasi
Publisher : Universitas Ciputra Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Permainan Shogi adalah permainan yang mulai digemari oleh masyarakat akhir-akhir ini. Untuk memainkannya, tentu diperlukan papan permainan khusus beserta bidak-bidaknya. Namun kepopuleran Shogi yang masih belum terlalu tinggi di luar negara Jepang, menyebabkan sulitnya untuk mencari papan permainan Shogi. Dikarenakan masalah tersebut, maka muncul lah permainan Shogi digital, dimana untuk bermain Shogi tidak diperlukan lagi papan permainan secara fisik, melainkan dapat dengan mudah dimainkan pada perangkat Android. Penelitian ini bertujuan untuk membuat kecerdasan buatan yang dapat memainkan permainan Shogi pada Android. Adapun kecerdasan buatan yang digunakan adalah kecerdasan buatan berbasis Monte-Carlo Tree Search. Manfaat dari aplikasi ini adalah agar seseorang dapat bermain shogi tanpa harus menggunakan papan permainan fisik dan sekaligus untuk menyediakan lawan bermain. Setelah melalui berbagai proses uji coba, dapat disimpulkan bahwa MCTS hanya mampu bersaing dengan kecerdasan buatan level easy hingga medium, namun keunggulan tersebut akan menurun drastis jika ditandingkan dengan kecerdasan buatan level hard. Akan tetapi apabila dibandingkan dengan algoritma game playing seperti Negamax AB Pruning maka MCTS dapat memenangkan rata-rata 80% pertandingan.
Evolutionary Algorithm in Game – A Systematic Review Armanto, Hendrawan; Rosyid, Harits Ar; Muladi; Gunawan
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 8, No. 2, May 2023
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v8i2.1714

Abstract

Research in the game field is increasingly numerous and challenging. The high interest in research on games is influenced by public awareness of the importance of games in developing ways of thinking, although it is undeniable that many people only pursue pleasure in playing games. In the past, not much games research has influenced into topics such as artificial intelligence, education, or other computer topics. But now games are having a tremendous impact on these topics. In fact, not infrequently games are used in various areas of life. Right now, artificial intelligence is an integral part of the game. If before, it was only used for creating an enemy. Right now artificial intelligence can affect various things, starting from assets, game difficulty levels, non-player characters (NPC), and even bots (AI agents) to run player characters. The complexity of artificial intelligence which is getting higher and higher requires a good optimization algorithm. The evolutionary algorithm is one of the optimization algorithms, even though it cannot find the best one, with the high speed it can find a good solution. Through this paper review, good conclusions are drawn regarding the use of evolutionary algorithms, representations made, fitness functions used, ways to prove a success, to what topics should be studied further.
Utilization of the Particle Swam Optimization Algorithm in Game Dota 2 Armanto, Hendrawan; Rosyid, Harits Ar; Muladi, Muladi; Gunawan, Gunawan
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 10 No 2 (2024): July
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/register.v10i2.3503

Abstract

Dota 2, a Multiplayer Online Battle Arena game, is widely popular among gamers, with many attempting to create efficient artificial intelligence that can play like a human. However, current AI technology still falls short in some areas, despite some AI models being able to play decently. To address this issue, researchers continue to explore ways to enhance AI performance in Dota 2. This study focuses on the process of developing artificial intelligence code in Dota 2 and integrating the particle swarm optimization algorithm into Dota 2 Team's Desire. Although particle swarm optimization is an old evolutionary algorithm, it is still considered effective in achieving optimal solutions. The study found that PSO significantly improved the AI Team's Desire and enabled it to win against Default AI of similar levels or players with low MMR. However, it was still unable to defeat opponents with higher AI levels. Furthermore, this study is expected to assist other researchers in developing artificial intelligence in Dota 2, as the complexity of the development process lies not only in AI but also in language, structure, and communication between files.
Multilevel Image Thresholding Memanfaatkan Firefly Algorithm, Improved Bat Algorithm, dan Symbiotic Organisms Search Pickerling, Pickerling; Armanto, Hendrawan; Bastari, Stefanus Kurniawan
Intelligent System and Computation Vol 1 No 1 (2019): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v1i1.24

Abstract

Multilevel image thresholding adalah teknik penting dalam pemrosesan gambar yang digunakan sebagai dasar image segmentation dan teknik pemrosesan tingkat tinggi lainnya. Akan tetapi, waktu yang dibutuhkan untuk pencarian bertambah secara eksponensial setara dengan banyaknya threshold yang diinginkan. Algoritma metaheuristic dikenal sebagai metode optimal untuk memecahkan masalah perhitungan yang rumit. Seiring dengan berkembangnya algoritma metaheuristic untuk memecahkan masalah perhitungan, penelitian ini menggunakan tiga algoritma metaheuristic, yaitu Firefly Algorithm (FA), Symbiotic Organisms Search (SOS), dan Improved Bat Algorithm (IBA). Penelitian ini menganalisis solusi optimal yang didapatkan dari percobaan masing-masing algoritma. Hasil uji coba masing-masing algoritma saling dibandingkan untuk menentukan kelemahan dan kelebihan setiap algoritma berdasarkan performanya. Hasil uji coba menyatakan tiga algoritma tersebut memiliki performa berbeda dalam optimisasi multilevel image thresholding.
Game Battle of Artificial Intelligence Berbasis Android Lumaris, Riandika; Armanto, Hendrawan; Adrianus, Willy
Intelligent System and Computation Vol 1 No 1 (2019): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v1i1.27

Abstract

Dengan berkembangnya permainan dan artificial intelligence saat ini, maka dibuat sebuah permainan Battle of Artificial Intelligence. Game ini merupakan game berbasis Android dan merupakan permainan pertarungan antar robot, tetapi robot yang dijalankan berdasarkan pada sistem artificial intelligence yang dibuat oleh pemain. Dalam konsep ini pemain dapat membuat sebuah sistem Artificial Intelligence yang digunakan pada sebuah robot, dan robot tersebut akan digunakan untuk bertarung dengan robot musuh. Permainan ini merupakan permainan strategi dimana pemain diajak untuk memikirkan cara memenangkan pertempuran, yaitu dengan memilih prioritas dan membuat sistem AI yang berbeda. Pemain dapat mengembangkan, mengubah sebuah sistem Artificial Intelligence sesuai dengan yang pemain inginkan. Tidak hanya itu, pengguna juga dapat mengembangkan sistem AI yang dibuat dengan cara melakukan pertempuran dengan pemain lain secara online. Pemain dapat mengetahui sejauh mana sistem Artificial Intelligence yang dibuat mampu bertahan. Dari 22 pengguna yang sudah melakukan uji coba permainan dan mengisi kuisioner diperoleh bahwa konsep permainan ini menarik. Berdasarkan pemahaman tutorial, pengguna dapat menambah pengetahuan pengguna mengenai bagaimana artificial intelligence bekerja. Hampir 60% pengguna menyukai interface yang dibuat di dalam game. Pengguna juga dapat menambah pengetahuan mengenai pembuatan sistem artificial intelligence pada permainan ini berdasarkan hasil pemahaman sistem artifcial intelligence. Dengan adanya multiplayer, pengguna termotivasi untuk mengembangkan sistem artificial intelligence dengan bertanding dengan pemain lain secara online. Rating rata-rata yang diperoleh dari 22 pengguna yang telah melakukan uji coba adalah 3.45.
Perencanaan Perjalanan Wisata Multi Kota dan Negara dengan Algoritma Cuttlefish Armanto, Hendrawan; Kevin, Reynold; Pickerling, Pickerling
Intelligent System and Computation Vol 1 No 2 (2019): INSYST:Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v1i2.91

Abstract

Liburan merupakan saat yang paling tepat untuk melakukan perjalanan wisata bersama keluarga maupun kerabat ke suatu daerah untuk melihat berbagai objek wisata yang ada. Sebelum melakukan liburan, tentu saja setiap orang akan menyiapkan rencana perjalanan yang paling efektif dan efisien. Hal ini tentu saja merepotkan bagi para wisatawan karena tidaklah mudah untuk menyusun jadwal perjalanan wisata yang baik dan efisien. Meskipun sudah terdapat berbagai paket tur yang ditawarkan bagi para wistawan, banyak dari paket tur yang ditawarkan tidak sesuai dengan keinginan dari masing-masing orang karena faktor selera yang berbeda-beda. Oleh karena itu, dibuatlah sebuah penelitian yang digunakan untuk melakukan perencanaan perjalanan wisata multi kota dan negara berbasiskan aplikasi mobile. Untuk menyelesaikan, penelitian ini akan menggunakan Algoritma Cuttlefish dalam pembuatan jadwal wisata secara otomatis berdasarkan data input yang telah diisikan oleh pengguna sebelumnya. Pada penelitian ini, pengguna dapat melakukan pembuatan perencanaan perjalanan wisata baik secara manual ataupun otomatis. Selain fitur untuk pembuatan perencanaan perjalanan wisata, juga terdapat fitur untuk melakukan pencarian tiket penerbangan dan juga akomodasi tempat tinggal dengan bantuan TravelPayouts API. Pada pembuatan jadwal wisata pun juga sudah dilengkapi dengan pencarian tiket penerbangan dan akomodasi tempat tinggal sesuai dengan input yang diberikan oleh pengguna sebelumnya. Pengguna juga dapat melihat jadwal wisata yang telah terbentuk dalam bentuk Table View, Map View dan PDF. Dengan dibuatnya penelitian ini diharapkan para pengguna dapat membuat sebuah jadwal wisata berdasarkan selera masing-masing. Jadwal wisata yang dibentuk secara otomatis dengan menggunakan Algoritma Cuttlefish tersebut juga dibuat sedemikian rupa hingga tercipta sebuah jadwal wisata yang efisien. Selain itu, pada tahap akhir dari tahap uji coba disebarkan kuesioner kepada responden. Kuesioner bertujuan untuk mengetahui komentar pengguna mengenai hasil akhir dari penelitian yang telah dibuat demi pengembangan untuk kedepannya. Berdasarkan hasil kuesioner, sebanyak 88% responden menyatakan jadwal wisata yang terbentuk sudah cukup baik.
Hyper Sudoku Solver dengan Menggunakan Harris Hawks Optimization Algorithm Dinata, Eric; Budianto, Herman; Armanto, Hendrawan
Intelligent System and Computation Vol 2 No 1 (2020): INSYST:Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v2i1.153

Abstract

Sudoku merupakan salah satu permainan klasik yang digemari banyak orang. Sebagai salah satu permainan papan, Sudoku mempunyai banyak varian, salah satunya Hyper Sudoku. Hyper Sudoku mempunyai tingkat kesulitas yang lebih tinggi daripada Sudoku biasa. Tingkat kompleksitas yang tinggi membuat pemainan ini menjadi brain teaser yang baik dan sangat cocok diambil sebagai media untuk menguji algoritma metaheuristik. Algoritma yang populer pada dekade terakhir ini adalah algoritma metaheuristik berbasis populasi, yang mengadaptasi perilaku binatang dalam memecahkan permasalahan optimasi, salah satunya adalah Harris Hawks Optimization (HHO). Seperti kebanyakan metode swarm intelligence (SI) lainnya, algoritma ini mengandalkan proses diversification dan intensification. Selain itu, HHO mempunyai empat strategi khusus untuk mencari solusi dengan kondisi yang berbeda. HHO mampu mencakup solusi multi dimensi, sehingga sangat cocok diimplementasikan pada persoalan Hyper Sudoku. Untuk uji coba, peneliti menggunakan bantuan aplikasi Visual Studio 2017 dan MATLAB R2018a. Pada proses pengujian, digunakan dua setting parameter yang berbeda, tiga macam persoalan Hyper Sudoku, dan tiga puluh independent run untuk mencapai hasil yang diinginkan. Berdasarkan hasil pengujian, dapat disimpulkan bahwa tingkat keberhasilan untuk mencari solusi pada persoalan Hyper Sudoku dengan menggunakan HHO berkisar antara 86 hingga 88%, dilihat dari fitness value-nya.