Claim Missing Document
Check
Articles

Found 17 Documents
Search

MARKOV CHAIN TO CONTROL GENERIC DRUG IN INVENTORY PROBLEM Marlina Setia Sinaga; Hamidah Nasution; Oktariani Purba; Lasker Pangarapan Sinaga
JURNAL HANDAYANI PGSD FIP UNIMED Vol 10, No 2: December 2019
Publisher : Universitas Negeri Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (461.43 KB) | DOI: 10.24114/jh.v10i2.18076

Abstract

Abstract: Have the generic drugs inventory been optimal, neither excessive nor deficient? Inadequate inventory can cause in losses due to increased ordering and storage costs. Shortage of generic drug will cause a decrease of public health services. Given demand generic drugs which always fluctuates, so stochastic process is the right method. In this study, the optimal level of generic drugs inventory will be analyzed by using the Markov chain. Steady state conditions were achieved when the same results obtained with the previous iteration result. There are 7 linear equations produced, each accompanied by 7 levels of inventory, optimal order quantities and also the costs.Keywords: Demand; Generic Drug; Inventory; Markov Chain.Abstrak: Apakah persediaan obat generik sudah optimal, tidak berlebih maupun kekurangan? Persediaan yang tidak optimal dapat mengakibatkan kerugian akibat bertambahnya biaya pemesanan maupun biaya penyimpanan. Kekurangan persediaan obat generik bahkan juga akan mengakibatkan turunnya tingkat layanan kesehatan masyarakat. Mengingat tingkat permintaan obat generik yang berfluktuasi maka proses stokastik menjadi pilihan metode yang tepat. Pada penelitian ini, tingkat persediaan obat generik yang optimal akan dianalisis dengan menggunakan markov chain. Kondisi steady state tercapai ketika hasil yang sama diperoleh dengan hasil dari iterasi sebelumnya. Ada 7 persamaan linier yang dihasilkan, masing-masing disertai dengan 7 tingkat persediaan dan besaran pemesanan optimal dan juga besaran biaya.Kata kunci: Permintaan, Obat Generik; Persediaan; Rantai Markov
ANALISIS OPTIMISASI PROGRAM KUADRATIK DENGAN FUNGSI PENALTY Roberto Parujian Sitanggang; Lasker Pangarapan Sinaga
JURNAL RISET RUMPUN ILMU PENDIDIKAN Vol. 2 No. 1 (2023): April : Jurnal Riset Rumpun Ilmu Pendidikan
Publisher : Lembaga Pengembangan Kinerja Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/jurripen.v2i1.812

Abstract

This study aims to analyze the optimality of a quadratic program model using the penalty function. The analysis is carried out in each case that has been made so that in each case optimal results are obtained. There are many methods that can be used to solve the quadratic program problem but in terms of the number of iterations, this research uses the penalty function and then implements it into the Matlab programming language. The results obtained in this study indicate that by using the penalty function as a parameter, the optimal value of a function can be obtained. The results of the analysis will also be more optimal by using the lagrange method depending on the parameter values obtained.
REKONSTRUKSI MODEL PROGRAM NONLINIER DENGAN FUNGSI POLINOMIAL MENJADI BENTUK PROGRAM KUADRATIK Amar Pilenon Sinaga; Lasker Pangarapan Sinaga
JURNAL RISET RUMPUN ILMU PENDIDIKAN Vol. 2 No. 1 (2023): April : Jurnal Riset Rumpun Ilmu Pendidikan
Publisher : Lembaga Pengembangan Kinerja Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/jurripen.v2i1.814

Abstract

The purpose of this research to revisits methods that are more effective in nonlinear Optimization with single variable polynomial functions at high degrees. Models with linear objective functions and constraint functions are Polynomials of third, fourth and fifth degree reconstructed into subproblems that are easier to solve, namely quadratic programs, using bilinear Auxiliary Functions and solved by MATLAB simulations. The method used is the development of Tawarmalani & Sahinidis' research regarding relaxation with Auxiliary Functions. Examples of nonlinear Optimization with polynomial functions are also given to illustrate the implementation of this algorithm. The results of the research show that the application of the development reconstruction method produces a global solution that is no better than the solution to the original problem so that it is not an effective alternative method to use.
ANALISIS KESTABILAN MODIFIKASI MODEL SEIQR PENYEBARAN SARS-COV-2 DENGAN ADANYA MOBILITAS INTERNASIONAL DI INDONESIA Br Purba, Rohna Lensa; Sinaga, Lasker P
Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Vol. 5 No. 3 (2024): Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistik
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/lb.v5i3.731

Abstract

Coronavirus Disease (COVID-19) is a virus caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Since January 2020, COVID-19 was declared a pandemic by WHO, various countries throughout the world have made efforts to prevent the entry of the COVID-19 outbreak into their respective countries, including Indonesia, by limiting mobility. This research aims to develop a modified SEIQR model for the spread of SARS-CoV-2 in Indonesia by considering international mobility and analyzing the stability of the model. Numerical simulations were also carried out to see the stability results of the SEIQR modification model using suspect data before/after vaccination. The results of this research show that the modified model has two critical points, namely disease-free and disease-endemic critical points, both points are stable when the parameter inequality conditions based on the Routh-Hurwitz criteria are met. Numerical simulations show that the process of suspected infection before vaccination is slower than individual infection after vaccination. From the results of this research, it is concluded that efforts to limit international mobility in Indonesia can reduce the number of new individuals exposed to and infected with COVID-19 in Indonesia.
Optimization of bantuan pangan non tunai (BPNT) distribution using bilevel linear programming in siantar martoba subdistrict pematang siantar Panggabean, Rijen Riston; Sinaga, Lasker Pangarapan
Desimal: Jurnal Matematika Vol. 7 No. 1 (2024): Desimal: Jurnal Matematika
Publisher : Universitas Islam Negeri Raden Intan Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24042/djm.v7i1.21868

Abstract

Bantuan Pangan Non Tunai (BPNT) is assistance that is in the second decile; in other words, KPMs who are in the first decile will also get assistance. A limited quota of BPNT recipients will result in people in categories such as the elderly group not getting this assistance. This problem arises because there is a significant increase in the population of the elderly group every year. The research method uses secondary data from data sources, namely the social service office, to develop a bilevel model for the problem of distributing food aid on cash by regularizing the bilevel model so that a linear programming model with a single objective function is obtained. In the regularization stage, the gradient descent method is used to find the optimal value of the penalty parameter. From the calculation results of the regularized model, it is found that the values of the variables  x_1= 2956,  x_2= 583, and x_3 = 250 have a value of Z = 3804. This bilevel linear programming model approach provides a strong basis for planning and decision-making related to the distribution of Non-Cash Food Assistance (BPNT) in Siantar Martoba Subdistrict. Therefore, it can be assumed that this bilevel linear programming approach can be used as a guideline for related agencies in allocating resources efficiently.
SEIQR Model Sensitivity and Bifurcation Analysis of SARS-CoV-2 Dynamics with International in-out Mobility Control in Indonesia Sinaga, Lasker Pangarapan; Kartika, Dinda; Farhana, Nurul Ain
Jambura Journal of Mathematics Vol 6, No 1: February 2024
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jjom.v6i1.23426

Abstract

This study aims to analyze the SEIQR model for the SARS-CoV-2 dynamic by considering in-out mobility. The model construction is based on the COVID-19 response strategy implemented by the Indonesian government, then analyzing the model by determining the equilibrium point and basic reproduction number, analyzing model stability, parameter sensitivity, and bifurcation. The results show that the model has stable disease-free and disease-endemic critical points when the parameter inequality conditions based on the Routh-Hurwitz criteria are satisfied. Numerical simulations show that the system takes a long time to reach equilibrium. Furthermore, the sensitivity analysis of the basic reproduction number shows that the most sensitive parameters are natural birth and death rate susceptible, contact rate of susceptible individuals with infected individuals from local and international subjects, and rate of exposed individuals who have infected. Thus, efforts to handle COVID-19 in Indonesia can be improved by focusing on controlling international in-out mobility, so that the number of exposed individuals who have been infected can be reduced. Moreover, the bifurcation analysis shows that the system undergoes forward or backward bifurcation under disease-free conditions if certain coefficient values are satisfied based on the Castillo-Chavez and Song conditions.
Penerapan Model Goal Programming pada Penjadwalan Perawat di RSIA Artha Mahinrus Medan Nababan, Agustin Richardo Josua; Sinaga, Lasker Pangarapan
ULIL ALBAB : Jurnal Ilmiah Multidisiplin Vol. 3 No. 9: Agustus 2024
Publisher : CV. Ulil Albab Corp

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56799/jim.v3i9.4755

Abstract

Tujuan dari penelitian ini adalah untuk menerapkan model Goal Programming dalam penjadwalan perawat di RSIA Artha Mahinrus Medan yang saat ini masih melakukan penjadwalan secara manual. Rumah sakit ini memiliki 18 perawat yang dijadwalkan bekerja dalam tiga shift, yaitu pagi, sore, dan malam. Akibat dari penjadwalan secara manual ini membutuhkan waktu yang lama dan kurang efisien dikarenakan adanya ketimpangan dalam pembagian shift. Goal Programming merupakan pengembangan program linear dengan fungsi yang majemuk. Model ini diterapkan menggunakan perangkat lunak LINGO dengan mempertimbangkan sejumlah kriteria, termasuk kebutuhan operasional rumah sakit dan aturan ketenagakerjaan. Dalam memodelkan masalah penjadwalan perawat ini ada dua sistem kendala yang harus dipenuhi yaitu kendala utama dan kendala tambahan. Kendala utama adalah aturan yang harus dipenuhi sedangkan kendala tambahan yaitu aturan rumah sakit yang masih diberi toleransi terhadap pelanggarannya. Dalam memodelkan masalah penjadwalan perawat, setiap masalah diubah kedalam model matematika serta penyelesaian model goal Programming dibantu dengan software LINGO. Berdasarkan output LINGO yang diperoleh, penjadwalan perawat dengan menggunakan model goal programming memenuhi semua sistem kendala, sedangkan jadwal manual rumah sakit tidak memenuhi sistem kendala