Muftih Alwi Aliu
Jurusan Matematika, FMIPA, Universitas Negeri Gorontalo

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Perbandingan Fungsi Pembobot Kernel pada Geographically Weighted Logistic Regression dalam Memodelkan Kasus Kemiskinan di Indonesia Muftih Alwi Aliu; Fahrezal Zubedi; Lailany Yahya; Franky Alfrits Oroh
Jurnal Matematika, Statistika dan Komputasi Vol. 18 No. 3 (2022): MAY, 2022
Publisher : Department of Mathematics, Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/j.v18i3.19567

Abstract

Indonesia is a developing country that is facing poverty. The percentage of the poor population in Indonesia in 2020 increased by 0.97 percent from 2019. A suitable analysis to overcome poverty in Indonesia is the regional effect, namely Geographically Weighted Logistic Regression (GWLR). This study aimed to compare the weighting functions of the Fixed Gaussian Kernel, Fixed Tricube Kernel, and Fixed Bisquare Kernel in the GWLR model in modeling poverty in Indonesia in 2020. The best model can determine significant factors that affected poverty in Indonesia in 2020. This study used the percentage data of poor population  and the factors affecting it, namely the Open Unemployment Rate , Human Development Index , and Total Population  in 34 Provinces in Indonesia. This study indicates that the GWLR model with the Fixed Gaussian Kernel weighting function is the best in modeling poverty in Indonesia in 2020 based on the smallest Akaike Information Criterion Corrected (AlCc) value. The GWLR model with the Fixed Gaussian Kernel weighting function shows the Open Unemployment Rate as a significant factor affecting poverty in Indonesia in 2020 in 10 provinces in Indonesia, namely Aceh, North Sumatra, West Sumatra, Riau, Jambi, South Sumatra, Bengkulu, Lampung, DKI Jakarta, and Banten.