p-Index From 2020 - 2025
9.479
P-Index
Claim Missing Document
Check
Articles

MAX PLUS ALGEBRA FOR DYNAMIC ANALYSIS SYSTEM OF TRANSPORT NETWORK (Case Study of Trans Hulontalangi Gorontalo City Transport) ., Nurwan; Yahya, Lailany
Sainstek Vol 6, No 4, 2011
Publisher : Jurnal Sainstek

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (32.811 KB)

Abstract

Petri nets and max plus algebra are a subclass of Discrete Event Systems (SED) that can determined and analyze the various properties of a system. Public transport is a very important community needs in urban life. Trans Hulontalangi bus is one of the transportation networks in the city of Gorontalo, held to address the problem of transport and reduce congestion. In this research constructed Petri net of transport lines trans Hulontalangi Gorontalo City, then conducted the study in the form max plus algebra. Number of place and transition of the Petri net is obtained respectively 14. Max plus algebra model is x(k +1) = Ax(k) , with ( ) 1 2 14 x(k) = x (k), x (k), , x (k) ' , and n n A Re .
PENYELESAIAN ANALITIK DAN PEMODELAN FUNGSI BESSEL Yahya, Lailany
Sainstek Vol 5, No 3, 2010
Publisher : Sainstek

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (39.917 KB)

Abstract

Abstrak: Dalam makalah ini akan dilakukan penyelesaian analitik dan pemodelan persamaan diferensial Bessel serta menunjukkan sifat simetri pada ruang Hilbert dan ortogonalitas untuk memperoleh grafik Fungsi Bessel Jn(x) dan fungsi Neuman Nn(x). Kata kunci : Pemodelan Fungsi Bessel, Hilbert, ortogonalitas
Sensitivity Analysis of Mathematical Model of Coronavirus Disease (COVID-19) Transmission Resmawan, Resmawan; Yahya, Lailany
CAUCHY Vol 6, No 2 (2020): CAUCHY: Jurnal Matematika Murni dan Aplikasi
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (125.218 KB) | DOI: 10.18860/ca.v6i2.9165

Abstract

The study was aimed to introduce a new model construction regarding the transmission of Coronavirus Disease (henceforth, COVID-19) in human population. The mathematical model was constructed by taking into consideration several epidemiology parameters that are closely identical with the real condition. The study further conducted an analysis on the model by identifying the endemicity parameters of COVID-19, i.e., the presence of disease-free equilibrium (DFE) point and basic reproduction number. The next step was to carry out sensitivity analysis to find out which parameter is the most dominant to affect the disease’s endemicity. The results revealed that the parameters 𝜂, 𝜁𝑠𝑒, 𝛼,, and 𝜎 in sequence showed the most dominant sensitivity index towards the basic reproduction number. Moreover, the results indicated positive index in parameters 𝜂 and 𝜁𝑠𝑒 that represented transmission chances during contact as well as contact rate between vulnerable individuals and exposed individual. This suggests that anincrease in the previous parameter value could potentially enlarge the endemicity of COVID-19. On the other hand, parameters 𝛼 and 𝜎, representing movement rate of exposedindividuals to the quarantine class and proportion of quarantined exposed individuals, showed negative index. The numbers indicate that an increase in the parameter value could decrease the disease’s endemicity. All in all, the study concludes that treatments for COVID-19 should focus onrestriction of interaction between individuals and optimization of quarantine.
Metode Spatial Autoregressive dalam Analisis Kerawanan Demam Berdarah Dengue di Kota Gorontalo Mahading, Tria Susilowati; Resmawan, Resmawan; Yahya, Lailany; Akolo, Ingka Rizkiyani
JMPM: Jurnal Matematika dan Pendidikan Matematika Vol 5, No 2 (2020): September 2020 - Februari 2021
Publisher : Universitas Pesantren Tinggi Darul Ulum Jombang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/jmpm.v5i2.1916

Abstract

This study was aimed at discussing spatial regression to find out factors influencing the dengue fever vulnerability in Gorontalo city. The spatial regression method used in this study was the Spatial Autoregressive Model (SAR). The SAR model can provide additional information about the effect of the location of the village/village on the incidence of DBD in Gorontalo City. This study concluded that the number of population, number of poor population, educational facilities and the area elevation were factors influencing the dengue fever vulnerability in the city of Gorontalo.
ANALISIS DINAMIKA MODEL EPIDEMI SEIQR-SI PENYEBARAN WORM BEBASIS WI-FI PADA SMARTPHONE Mohamad, Regina; Yahya, Lailany; Resmawan, Resmawan; Nuha, Agusyarif Rezka
TRANSFORMASI Vol 5 No 1 (2021): TRANSFORMASI : Jurnal Pendidikan Matematika dan Matematika
Publisher : Pendidikan Matematika FMIPA Universitas PGRI Banyuwangi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36526/tr.v5i1.1179

Abstract

Artikel ini membahas model matematika SEIQR-SI penyebaran worm berbasis Wi-Fi pada smartphone. Worm berbasis Wi-Fi termasuk perangkat lunak yang mampu mereplikasi dirinya untuk mencoba memecahkan kata sandi setiap router Wi-Fi baru yang ditemuinya tanpa bantuan manusia. Analisis model dilakukan dengan menentukan titik kesetimbangan beserta kestabilannya. Hasil analisis menunjukkan bahwa model SEIQR-SI memiliki dua titik kesetimbangan yaitu titik kesetimbangan bebas worm dan titik kesetimbangan endemik. Titik setimbang bebas worm stabil asimtotik lokal jika , sedangkan titik setimbang endemik stabil asimtotik lokal jika . Pada bagian akhir diberikan simulasi secara numerik yang menunjukkan peningkatan laju karantina oleh Wi-Fi base station pada worm dapat menekan jumlah node smartphone dan Wi-Fi yang terinfeksi worm.
DETERMINAN SUATU MATRIKS TOEPLITZ K-TRIDIAGONAL MENGGUNAKAN METODE REDUKSI BARIS DAN EKSPANSI KOFAKTOR Rasmawati Rasmawati; Lailany Yahya; Agusyarif Rezka Nuha; Resmawan Resmawan
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi EULER: Volume 9 Issue 1 June 2021
Publisher : Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/euler.v9i1.10354

Abstract

This paper discusses the determinants of a k-tridiagonal Toeplitz matrix using row reduction and cofactor expansion methods. The analysis was carried out recursively from the general form of the determinant of the tridiagonal Toeplitz matrix, the determinant of the 2-tridiagonal Toeplitz matrix, and the determinant of the 3-tridiagonal Toeplitz matrix. In the end, the general form of the determinant of the k-tridiagonal Toeplitz matrix is obtained.
APLIKASI ALGORITMA FLOYD-WARSHALL DENGAN PENDEKATAN MADM DALAM MENENTUKAN RUTE TERPENDEK PENGANGKUTAN SAMPAH Zulmagfir Buako; Lailany Yahya; Novianita Achmad
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi EULER: Volume 9 Issue 2 December 2021
Publisher : Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/euler.v9i2.10979

Abstract

Currently, the problem of environmental hygiene caused by the accumulation of garbage becomes a serious problem for every community. In addressing this problem, an efficient waste transport process is required. This study aims to find the shortest route of garbage transportation in Gorontalo city by using Floyd Warshall Algorithm by finding the smallest weight between each point (Vertex). In this study, the weights used in the Floyd Warshall Iteration Algorithm were Alternative weights obtained by the Multi-Attribute Decision-Making approach (MADM). The criteria for determining weights in MADM use three indicators that affect the efficiency of garbage transportation, namely Distance, time, and congestion. The route used in this study is the dump truck route with 17 garbage transportation points. After obtaining the Alternate weight and iteration using Floyd Warshall algorithm obtained the shortest route with the smallest trajectory weight of 110.845.
Metode Spatial Autoregressive dalam Analisis Kerawanan Demam Berdarah Dengue di Kota Gorontalo Tria Susilowati Mahading; Resmawan Resmawan; Lailany Yahya; Ingka Rizkiyani Akolo
JMPM: Jurnal Matematika dan Pendidikan Matematika Vol 5, No 2 (2020): September 2020 - Februari 2021
Publisher : Universitas Pesantren Tinggi Darul Ulum Jombang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/jmpm.v5i2.1916

Abstract

This study was aimed at discussing spatial regression to find out factors influencing the dengue fever vulnerability in Gorontalo city. The spatial regression method used in this study was the Spatial Autoregressive Model (SAR). The SAR model can provide additional information about the effect of the location of the village/village on the incidence of DBD in Gorontalo City. This study concluded that the number of population, number of poor population, educational facilities and the area elevation were factors influencing the dengue fever vulnerability in the city of Gorontalo.
Menentukan Waktu Optimal untuk Pembuatan Kerajinan Sulaman Karawo Menggunakan Aljabar Max-Plus Lailany Yahya; Nurwan Nurwan; Resmawan Resmawan
Vygotsky : Jurnal Pendidikan Matematika dan Matematika Vol 4, No 1 (2022): Vygotsky: Jurnal Pendidikan Matematika dan Matematika
Publisher : Universitas Islam Lamongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (411.179 KB) | DOI: 10.30736/voj.v4i1.442

Abstract

Kerajinan Karawo merupakan salah satu kerajinan khas Gorontalo. Proses pembuatannya membutuhkan waktu yang sangat lama, mulai dari penyediaan bahan baku dan alat, pembuatan atau persiapan motif, pemotongan, pengaturan motif, mencabut benang, menyulam, merawang/ penenunan dan penyelesaian akhir. Dalam penelitian ini, metode aljabar max-plus digunakan untuk menentukan waktu optimal dalam membuat kerajinan sulaman karawo. Aktivitas pembuatan kerajinan sulaman karawo didesain dalam diagram kemudian ditransformasi dalam matriks max-plus. Berdasarkan matriks  diperoleh , hal ini menggambarkan bahwa waktu optimum pembuatan kerajinan sulaman karawo adalah 34,5 hari.
Perbandingan Fungsi Pembobot Kernel pada Geographically Weighted Logistic Regression dalam Memodelkan Kasus Kemiskinan di Indonesia Muftih Alwi Aliu; Fahrezal Zubedi; Lailany Yahya; Franky Alfrits Oroh
Jurnal Matematika, Statistika dan Komputasi Vol. 18 No. 3 (2022): MAY, 2022
Publisher : Department of Mathematics, Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/j.v18i3.19567

Abstract

Indonesia is a developing country that is facing poverty. The percentage of the poor population in Indonesia in 2020 increased by 0.97 percent from 2019. A suitable analysis to overcome poverty in Indonesia is the regional effect, namely Geographically Weighted Logistic Regression (GWLR). This study aimed to compare the weighting functions of the Fixed Gaussian Kernel, Fixed Tricube Kernel, and Fixed Bisquare Kernel in the GWLR model in modeling poverty in Indonesia in 2020. The best model can determine significant factors that affected poverty in Indonesia in 2020. This study used the percentage data of poor population  and the factors affecting it, namely the Open Unemployment Rate , Human Development Index , and Total Population  in 34 Provinces in Indonesia. This study indicates that the GWLR model with the Fixed Gaussian Kernel weighting function is the best in modeling poverty in Indonesia in 2020 based on the smallest Akaike Information Criterion Corrected (AlCc) value. The GWLR model with the Fixed Gaussian Kernel weighting function shows the Open Unemployment Rate as a significant factor affecting poverty in Indonesia in 2020 in 10 provinces in Indonesia, namely Aceh, North Sumatra, West Sumatra, Riau, Jambi, South Sumatra, Bengkulu, Lampung, DKI Jakarta, and Banten.  
Co-Authors Abdul, Nur Safitri Agusyarif Rezka Nuha Akolo, Ingka Rizkiyani Aliwu, Randa Resvitasari Alvitha Habibie Anisa, Lia Nur Anissa Dwi Wijayanti Armayani Arsal Barham, Siti Maryam Bertu Rianto Takaendengan Cindy Aisa Putri Noor D Une, Putri Mutia Dewi Rahmawaty Isa Djihad Wungguli FAHREZAL ZUBEDI Franky Alfrits Oroh Harun, Artika Rahayu Hasan S. Panigoro Hendro Budi Santoso Herlina Jusuf Ifan Wiranto Indrawati Lihawa Ingka Rizkiyani Akolo Ismail Djakaria Ismail, Minton Isran K Hasan Jusuf, Anryan Karina Anselia Mamonto Kartin Usman Kasim, Miranti H. Kasim, Rahmat Rajib Kaune, Nurlaila Kiayi, Fuji Fauzia Kobandaha, Putri Ekawaty La Ode Nashar Ladjali, Sri Indriani Laita, Nazrilla Hasan Mahading, Tria Susilowati Mahmud, Sri Lestari Majid Masra Latjompoh Melasarah Deswita Rahmadi Moh Dody Afandi Rauf Mohamad, Regina Muftih Alwi Aliu Nancy Katili Naue, Siti Nurmeylisya Nikmatisni Arsad NISKY IMANSYAH YAHYA Novianita Achmad Nurdin, Sri Ayu Nurhayati Abbas Nursiya Bito Nurwan Nurwan Nurwan, Nurwan Olii, Isran R. Perry Zakaria Prasetyo Usman Putri Ayuningtias Mahdang Rahman, Yulinar Rahmi, Emli Ramadiana, Anastasya Randi Mooduto Rasmawati Rasmawati Rauf, Moh Dody Afandi Resmawan Resmawan Revandi S. Pakaya Rusdianto Ibrahim Salmun K. Nasib Sari, Lia Nanda Sari, Septi Rahmita Sembiring, Rinawati Siti Nurmardia Abdussamad Sitria Jemin Sri Maryam Mohungo Sri Meylanti S. Ali Sumarno Ismail Syamsu Qomar Badu Tedy Machmud Tiara Posangi Tiarawati, Ni Wayan Tria Susilowati Mahading Utina, Fitriani Windharta Oei, Smily Yusuf, Putria Zulmagfir Buako