Claim Missing Document
Check
Articles

Found 16 Documents
Search

Sistem Rekomendasi Lowongan Pekerjaan Menggunakan Content-Based Filtering Fitria, Alya; Zaman, Syahiduz; Yaqin, Muhammad Ainul
JEPIN (Jurnal Edukasi dan Penelitian Informatika) Vol 10, No 3 (2024): Volume 10 No 3
Publisher : Program Studi Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/jp.v10i3.83801

Abstract

Pada era digital dan globalisasi saat ini, transformasi teknologi informasi telah mengubah lingkup pencarian pekerjaan, dengan platform online seperti LinkedIn menjadi alat utama bagi pencari kerja dan perusahaan. Penelitian ini bertujuan untuk mengembangkan sistem rekomendasi pekerjaan menggunakan metode content-based filtering, yang mencocokkan profil pencari kerja dengan lowongan pekerjaan berdasarkan karakteristik dan preferensi individu. Data diperoleh melalui web scraping dari situs JobStreet untuk data lowongan pekerjaan dan LinkedIn untuk data pencari kerja, meliputi 437 data lowongan pekerjaan dan 100 data profil pencari kerja. Proses analisis melibatkan preprocessing text, pembobotan kata dengan TF-IDF, dan perhitungan cosine similarity untuk menentukan tingkat kemiripan antar dokumen. Hasil pengujian menunjukkan bahwa sistem rekomendasi yang dikembangkan dapat memberikan rekomendasi yang relevan dengan rata-rata nilai presisi sebesar 0.53. Pengujian fungsionalitas dengan metode blackbox testing menghasilkan kinerja sistem yang sesuai dengan fungsinya. Penelitian ini menyimpulkan bahwa pendekatan content-based filtering efektif dalam menciptakan rekomendasi pekerjaan yang sesuai dengan latar belakang dan keterampilan pencari kerja, memberikan solusi praktis bagi mereka dalam menemukan pekerjaan yang relevan serta mengurangi ketidaksesuaian antara kualifikasi individu dan kebutuhan pasar kerja.
Clustering of Post-Disaster Building Damage Levels Using Discrete Wavelet Transform and Principal Component Analysis Purnamasari, Putri; Imamudin, Mochamad; Zaman, Syahiduz; Syauqi, A’la; Almais, Agung Teguh Wibowo
Journal of Information Technology and Cyber Security Vol. 3 No. 1 (2025): January
Publisher : Department of Information Systems and Technology, Faculty of Intelligent Electrical and Informatics Technology, Universitas 17 Agustus 1945 Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30996/jitcs.12270

Abstract

Damage assessment of buildings after natural disasters is generally performed manually by a team of experts at the disaster site, making it prone to human error and resulting in low accuracy in classifying the level of damage. This research aims to develop a more efficient and accurate method in post-disaster building damage assessment by integrating Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA) techniques. The main contribution of this research is the use of DWT as well as the application of this method on more than one image to improve the accuracy of damage level classification. A total of nine unlabelled images of post-disaster buildings were used in this study, which were obtained from the Regional Disaster Management Agency or Badan Penanggulangan Bencana Daerah (BPBD) of Malang City, Indonesia. The methods applied include data pre-processing, DWT decomposition for image analysis to identify features, and clustering using PCA to cluster the level of building damage into light, medium, and heavy categories, which are then evaluated based on accuracy. The results showed that the method yielded 100% accuracy with validation results from surveyors, as evidenced through 2D and 3D visualisations based on principal components (PC1-PC3). These findings confirm that the integration of DWT and PCA can be an effective alternative in improving the accuracy of post-disaster building damage assessment, as well as supporting decision-making in rehabilitation and reconstruction after natural disasters.
Text Mining Approach to Emotion Analysis in Translation of Surah Yusuf With NRC Emotion Lexicon Syafiqah, Annisa; Zaman, Syahiduz; Imamudin, Mochamad
IT Journal Research and Development Vol. 9 No. 2 (2025)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/itjrd.2025.17765

Abstract

In the digital era, the accessibility of vast textual data, including the Quran, has facilitated broader comprehension of its teachings. This study analyzes the emotions in the English translation of Surah Yusuf using the NRC Emotion Lexicon. The findings show that trust is the most dominant emotion (22.89%), followed by joy (15.66%), anticipation (13.25%), sadness (12.05%), fear (10.84%), anger (9.64%), surprise (8.43%), and disgust (7.23%). These results confirm the text's diverse emotional expressions and the effectiveness of the lexicon-based method. The research aligns with the initial goals and highlights the potential of emotion analysis in understanding religious texts. Future research can expand the analysis to more verses and use machine learning for improved accuracy. This study aids scholars and students in exploring the Quran's emotional and spiritual dimensions and can be adapted to other texts for broader applications.
Optimasi Konten Pemasaran dan Platform Online dengan Teknik Search Engine Optimization Mahadir Muhamad Erfin; Rifqi Mufiddin; Syahiduz Zaman
Jurnal Teknik Informatika dan Sistem Informasi Vol 8 No 3 (2022): JuTISI
Publisher : Maranatha University Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28932/jutisi.v8i3.5468

Abstract

Running a business just doing production is not enough but must do optimal product marketing. Business actors who market their products through conventional marketing will be unable to compete with other entrepreneurs who market their products through online platforms because online platforms are now widely found via the internet. Conventional product marketing is done because they do not understand the right optimization techniques in product marketing, especially in marketing content optimization strategies and the use of online platforms. Optimization of content marketing and online platforms requires a technique known as SEO or Search Engine Optimization. This technique is used to help optimize marketing precisely in determining content and showing product content in internet searches through online platforms. Product content and optimized online platforms will provide a great help in product marketing. This study aims to explain marketing content optimization strategies and online platform settings so that they can display shrimp cracker product content posts on the search page. The results of this study are able to optimize the marketing content of the right shrimp cracker products and display product keyword search results on internet search pages through the online platforms Tumblr, TribunJualBeli, and Carousell.
Implementasi Metode Random Forest untuk Peningkatan Efisiensi Penilaian Status Uji Kelayakan Kendaraan Bermotor di Kota Malang Maharani, Hamidah Lutfiyanti; Zaman, Syahiduz
Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen Vol 15 No 1 (2025): Maret 2025
Publisher : STMIK Palangkaraya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33020/saintekom.v15i1.751

Abstract

The growth of vehicle volume in Malang City presents challenges in the form of increased accident risks, especially if the technical condition of the vehicles does not meet standards. As a preventive measure, the Motor Vehicle Feasibility Testing (KIR Test) is conducted to ensure that vehicles comply with safety standards. However, manual assessments in this process are prone to human error, necessitating a more efficient and accurate system. This study implements the Random Forest method to classify the eligibility status of motor vehicles, focusing on two main categories: public and private vehicles. This implementation is expected to improve the efficiency and accuracy of the KIR test process. Among the data split ratios tested, a 60% training data and 40% test data ratio yielded the best results with an accuracy of 86.94% and an OOB error rate of 13.03%, indicating the model's error rate on data not used during training. These results indicate that the Random Forest method effectively identifies the eligibility status of motor vehicles with an optimal data configuration.
Optimalisasi Layanan Akademik di Perguruan Tinggi Melalui Evaluasi Kematangan TI dengan COBIT 2019 Rosyadi, Dewa Bagus Alif; Zaman, Syahiduz
Jurnal Manajemen Teknologi Informatika Vol. 2 No. 3 (2024): Jurnal Manajemen Teknologi Informatika
Publisher : JENTIK

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70038/jentik.v2i3.147

Abstract

Peningkatan mutu layanan akademik menjadi kebutuhan mendesak bagi perguruan tinggi dalam menghadapi tuntutan masyarakat modern dan persaingan global. Penelitian ini mengevaluasi tingkat kematangan tata kelola teknologi informasi pada layanan akademik perguruan tinggi swasta (PTS) di Kota Malang menggunakan kerangka kerja COBIT 2019, khususnya pada domain Deliver, Service, and Support (DSS). Penelitian ini menggunakan metode survei dengan pengumpulan data melalui kuesioner yang diisi oleh staf teknologi informasi dan staf pelayanan di tiga PTS. Hasil penelitian menunjukkan bahwa tingkat kematangan tata kelola teknologi informasi bervariasi di setiap institusi, dengan beberapa subdomain masih memerlukan perbaikan signifikan, seperti manajemen operasi (DSS01) dan manajemen kesinambungan layanan (DSS04). Rekomendasi spesifik disampaikan untuk meningkatkan efisiensi, keamanan, dan kualitas layanan. Studi ini diharapkan dapat menjadi acuan bagi perguruan tinggi lainnya dalam memperbaiki tata kelola teknologi informasi mereka untuk mendukung pelayanan akademik yang lebih baik.