Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Preliminary Study on biogas production from POME by DBD plasma Ariadi Hazmi; Reni Desmiarti; Primas Emeraldi; Muhammad Imran Hamid; Edwardo Edwardo; Eka Putra Waldi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 15, No 2: June 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v15i2.5574

Abstract

A new technology to produce biogas using a dielectric barrier discharge (DBD) plasma system from palm oil mill effluent (POME) was investigated. The batch experiments were examined at applied voltages of 15, 20 and 25 kV. The results showed that the highest yields of hydrogen and methane were achieved at an applied voltage of 25 kV after 1 hour were 2.42 and 1.32 mL/mL of POME, respectively. The biogas was composed of 65% hydrogen and 35% methane. In order to make the results of this study applicable to biogas plants, the effects of flowrate and consumed energy are important parameters that should be further investigated in a future study.
An optimized method of partial discharge data retrieval technique for phase resolved pattern Eka Putra Waldi; Aulia Aulia; Ariadi Hazmi; Hairul Abral; Syukri Arief; Mohd Hafizi Ahmad
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 14, No 1: March 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v14i1.2602

Abstract

The measurement of phase resolved partial discharge requires a gigantic memory capacity to store all the waves of the PD test results. This limitation eventually hinders the testing. It is necessary to optimize on the aspect of memory storage capability to reduce the storage requirements. In light of foregoing, the partial discharge data retrieval techniques with sampling rate methods were used to detect the peak of partial discharge as well as the PD constituent representatives. The optimization process was performed by using integration of oscilloscope and LabVIEW software. The partial discharge data recording can be easily confined to the points of the partial discharge occurrence only. As results, the storage points were reduced by taking wave magnitude associated with PD, thereby resulting in more representative data. Therefore, this optimized method was able to reduce the file size of the test results up to 97 percent of PD original size thereby decreasing the usage of hard disk storage.