Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Natural Science: Journal of Science and Technology

RANCANG BANGUN SISTEM KLASIFIKASI STATUS GIZI BALITA MENGGUNAKAN METODE K-NEAREST NEIGHBOR (KNN) Amalia, Rizki; Musdalifah, Selvy; Hendra, Andi; Sudarsana, I Wayan
Natural Science: Journal of Science and Technology Vol 2, No 2 (2013): Volume 2 Number 2 (August 2013)
Publisher : Univ. Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Children under five age is a group that susceptible to health problems such as lack of energy and protein nutrition, so this age group should get special attentions. One of the problems that should get an attention is problems nutritional status of children. Nutritional status of children is one of the indicators the level of social welfare. The classification of children?s nutritional status was conducted by nutritionist, but the problem is the scattering of nutritionist in Palu is very limited, especially in areas which far away from the city center. This case of study will be taken from Pantoloan Boya village. The limited of nutritionist was being the problems in detecting the indication of malnutrition. Through this research will be made an implementation based of computer system that has a same understanding as a nutritionist who is able to determine the nutritional status of children. One method that can be used in solving the classification of the nutritional status of children is K-Nearest Neighbor (KNN) method. K-Nearest Neighbor (KNN) is one method that use the learning algorithm where the result from the new testing sample is classified based on the majority of KNN?s category. In this research, the system classified the children according to their nutritional status based on data that obtained from the place of research. These results using k = 1 as the number of nearest neighbors which labels the majority of the k nearest neighbors are used to predict the unknown nutritional status of new data. This is because for k = 1 has better accuracy results than other values ??of k is equal to 81.67%.
MODEL MATEMATIKA UNTUK SISTEM EVAKUASI TSUNAMI KOTA PALU (SET-KP) BERBASIS JALUR TERPENDEK DAN WAKTU EVAKUASI MINIMUM Sudarsana, I Wayan; Mendi, Sulistiawati; Abdullah, Abdullah; Hendra, Andi; Sahari, Agusman
Natural Science: Journal of Science and Technology Vol 2, No 3 (2013): Volume 2 Number 3 (December 2013)
Publisher : Univ. Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1117.888 KB)

Abstract

Kota Palu memiliki tingkat resiko tinggi terhadap ancaman gempa bumi dan tsunami karena terletak dalam Sabuk Gempa Pasifik dan bentangan sesar Palu Koro. Kriteria InaTews waktu yang tersedia untuk evakuasi setelah peringatan dini tsunami berbunyi adalah 15 menit. Evakuasi penduduk dari pesisir pantai kota Palu ke tempat aman merupakan tindakan yang harus dan segera dilakukan sebagai langkah penyelamatan bila terjadi tsunami. Informasi tentang tempat, jalur terpendek, dan waktu tempuh minimum untuk evakuasi memainkan peranan yang sangat penting dalam keselamatan penduduk yang akan dievakuasi. Pada penelitian ini telah dihasilkan sebuah perangkat lunak Sistem Evakuasi Tsunami untuk kota Palu (SET-KP) berbasis jalur terpendek dan waktu evakuasi minimum. Penentuan jalur terpendek dalam SET-KP menggunakan algoritma Dijkstra dan menghitung waktu evakuasi minimumnya menggunakan model matematika . Skenario evakuasi penduduk di semua cluster pesisir kota Palu menggunakan perangkat lunak SET-KP diperoleh bahwa cluster dengan jumlah penduduk cukup banyak waktu evakuasinya melebihi ketentuan InaTews. Sementara itu, cluster dengan jumlah penduduk sedikit ketentuan InaTews dapat dipenuhi, seperti cluster C70, C76 dan C79. Oleh karena itu, shelter (titik evakuasi) yang telah didefinitifkan sebelumnya dalam dokumen BPBD perlu direposisi untuk memenuhi ketentuan InaTews.