Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Engineering and Applied Technology

Experimental test on polyended polysterene addition as a partial substitute of fine aggregate Bagas Habibilah; Slamet Widodo
Journal of Engineering and Applied Technology Vol 3, No 1 (2022): (March)
Publisher : Faculty of Engineering, Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/jeatech.v3i1.42550

Abstract

This research aimed to determine the values of specific gravity, compressive strength, and modulus of elasticity by replacing some fine aggregate with styrofoam (Polyended Polysterene). This research was done by using experimental methods in the Building Materials Laboratory, Department of Civil and Planning Engineering Education, Universitas Negeri Yogyakarta. The percentage of Polyended Polysterene addition as a partial substitute of fine aggregate was done at 0%, 15%, 30%, and 45%. Each percentage of Polyended Polysterene addition as a partial replacement of fine aggregate consisted of 3 cylindrical concrete specimens with a diameter of 150 mm and a height of 300 mm. Specific gravity testing of concrete was conducted 24 hours after concrete casting. The compressive strength and modulus of elasticity of the concrete were tested at 91 days. The results of the research showed that: (1) the specific gravity values of concrete decreased linearly with the value of 2345,83 kg/m3, 2242,45 kg/m3, 2154,88 kg/m3, and 2040,79 kg/m3, (2) the compressive strength values of concrete are 28,55 MPa, 18,52 MPa, 20,26 MPa, and 15,3 MPa, and (3) the modulus of elasticity values of concrete is 15969,61 MPa, 13395,58 MPa, 14994,2 MPa, dan 14479,03 MPa. From the test results, the optimal value at a percentage of 30% with a specific gravity value of concrete close to the lightweight concrete requirements and a compressive strength value meets the structural requirements.
Comparative study of sinus earthquake forces and ground motion on structure behavioral response using linear time history analysis method Suryatama Ageng Pamuji; Slamet Widodo; Maris Setyo Nugroho; Faqih Ma`arif; Ahmed Wasiu Akande
Journal of Engineering and Applied Technology Vol 4, No 1 (2023): (March)
Publisher : Faculty of Engineering, Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/jeatech.v4i1.58666

Abstract

This study aimed to calculate the design earthquake with a harmonic sine wave approach at a frequency of 1.5 Hz; 2.5 Hz; 3.5 Hz; 4;5 Hz, as well as Loma Prieta, Northridge, and Kobe ground motion. In addition, a structural response review was also carried out based on a comparison of the effects of the ground motion and sine wave earthquake forces. This study used an experimental method of modelling an apartment building with a scale of 1: 50. The case study was located in Mantrijeron, Yogyakarta, which has a seismic category in the medium-size class. The analysis phase began with material definition, element dimension estimation, modelling by analysis software, loading estimation, structural analysis, and comparison of structural responses based on the deviation. The results indicate that the building model could withstand dynamic loads from harmonic waves up to a frequency of 5.5 Hz for one minute of vibration. The most significant deviation is shown at a frequency of 4.5 Hz with an x-axis direction of 0.110 and a y-direction of 0.160. The structural response resulting from ground motion loading shows that the highest deviation occurred due to the influence of the Kobe earthquake, with a deviation of 0.063 in the x-axis direction and 0.054 in the y-axis direction. Based on these results, the effect of harmonic sine waves is greater than the ground motion loading on the response of the building structure, so it is used as an experimental loading through a vibrating table with the actual residual deviation results showing a value of 0.9 mm in the y-axis direction. The difference in structural response results could be caused by the supports and connections modelling in planning through analysis software which could not precisely represent the actual implementation of the building model.