Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : JSAI (Journal Scientific and Applied Informatics)

Automated Fruit Classification Menggunakan Model VGG16 dan MobileNetV2 Umniy Salamah; Anita Ratnasari; Sarwati Rahayu
JSAI (Journal Scientific and Applied Informatics) Vol 5 No 3 (2022): November 2022
Publisher : Fakultas Teknik Universitas Muhammadiyah Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36085/jsai.v5i3.3615

Abstract

Pengembangan robot atau mesin untuk membantu kegiatan pertanian memerlukan riset yang panjang. Teknologi tersebut harus dapat memiliki keahlian dalam melakukan berbagai macam aktivitas dan mampu mendeteksi objek yang menjadi sasaran pekerjaannya. Untuk memenuhi hal ini, riset untuk mendeteksi objek pertanian, misalnya buah, menjadi salah satu agenda riset yang perlu dilakukan dan dikembangkan. Tujuan penelitian ini adalah untuk mengetahui hasil perbandingan performa deep learning yaitu VGG16 dan MobileNetV2 untuk fruit classification. Penelitian ini menggunakan dataset dengan jumlah total 90.483 data dengan ukuran gambar 100x100 piksel dan jumlah kelas tanaman buah yang akan diklasifikasi adalah sebanyak 131 kelas. Pada proses testing menggunakan dataset yang ada, MobileNetV2 mendapatkan akurasi 98.4% dan ResNet50 mendapatkan akurasi 99,2%.
Model Sequential Resnet50 Untuk Pengenalan Tulisan Tangan Aksara Arab Sarwati Rahayu; Sulis Sandiwarno; Erwin Dwika Putra; Marissa Utami; Hadiguna Setiawan
JSAI (Journal Scientific and Applied Informatics) Vol 6 No 2 (2023): Juni
Publisher : Fakultas Teknik Universitas Muhammadiyah Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36085/jsai.v6i2.5379

Abstract

Research for Arabic handwriting recognition is still limited. The number of public datasets regarding Arabic script is still limited for this type of public dataset. Therefore, each study usually uses its dataset to conduct research. However, recently public datasets have become available and become research opportunities to compare methods with the same dataset. This study aimed to determine the implementation of the transfer learning model with the best accuracy for handwriting recognition in Arabic script. The results of the experiment using ResNet50 are as follows: training accuracy is 91.63%, validation accuracy is 91.82%, and the testing accuracy is 95.03%.
Komparasi Hasil Color Feature Extraction HSV, LAB dan YCrCb pda Algoritma SVM untuk Klasifikasi Spesies Burung Sarwati Rahayu; Andi Nugroho; Erwin Dwika Putra; Mariana Purba; Hadiguna Setiawan; Sulis Sandiwarno
JSAI (Journal Scientific and Applied Informatics) Vol 6 No 3 (2023): November
Publisher : Fakultas Teknik Universitas Muhammadiyah Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36085/jsai.v6i3.5920

Abstract

The classification of bird species is a problem often faced by ornithologists, and has been considered scientific research since antiquity. This study aims to evaluate the results of color feature extraction including HSV, LAB and YCrCb against the results of the SVM classification. In addition, the results of this study are useful to determine the performance of color feature extraction that is suitable for bird species classification. The dataset used was 22,617 bird species images. Based on experimental results, the effect of HSV on the SVM classification caused a decrease in accuracy by -0.33% while LAB and YCrCb on the SVM classification caused an increase in accuracy of 0.44% and 0.21%. However, the accuracy of the SVM classification does not yet have good performance so that further research will be carried out using other classifications, including convolutional neural networks and others.