Claim Missing Document
Check
Articles

Found 25 Documents
Search

Website Based Academic Information System Design Using Extreme Programming Method Prasetyo, Deni; Utami, Annisaa; Laksana, Tri Ginanjar
Journal of INISTA Vol 6 No 2 (2024): May 2024
Publisher : LPPM Institut Teknologi Telkom Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/inista.v6i2.1214

Abstract

SMP Negeri 3 Watukumpul is a junior high school located in Bongas Village, Watukumpul District, Pemalang Regency, Central Java. This school has implemented website-based technology as a medium for conveying information, but the website is no longer usable. The data obtained from the interview results indicate the need for an academic information system website as a medium for disseminating information and managing academic data digitally. Based on the existing problems, researchers will re-create a website-based Academic Information System for SMP Negeri 3 Watukumpul as a medium for delivering information and managing academic data. This research uses the Extreme Programming method, which is one of the development methodologies of Agile Software Development Methodologies. The Extreme Programming method has several stages: Planning, Design, Coding, and Testing. The system uses black box testing on student, admin, and teacher accounts. Blackbox testing on student accounts includes login, register, profile, news, wall magazine, course material, grades, contacts, and logout menus. Blackbox testing on teacher accounts consists of login menus, course materials, grades, and grade page details. Black box testing on admin accounts consists of login menus, school profiles, teachers and employees, news, wall magazines, extracurriculars, and lesson schedules. In testing this system, researchers use black box testing to test its functionality. The black box test from the student's account got a result of 100%, the black box test result from the teacher's account got 100%, and the black box test from the admin account was 98.57%. Thus, the average black box test result from the three users was 99.52%. With the existence of this school website, it is hoped that information dissemination activities and academic data management activities will become more effective and efficient.
Performance Comparison of Random Forest (RF) and Classification and Regression Trees (CART) for Hotel Star Rating Prediction Utami, Annisaa; Permadi, Dimas Fanny Hebrasianto; Rosita, Yesy Diah; Unjung, Jumanto
Scientific Journal of Informatics Vol. 11 No. 3: August 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i3.11068

Abstract

Purpose: This study proposes to evaluate the effectiveness of Random Forest (RF) compared to Classification and Regression Trees (CART) in prediction of hotel star ratings. The objective is to identify the algorithm that provides the most reliable and accurate classification outcomes based on diverse hotel attributes in accordance with the standard categorization of star hotel categories. This is necessary due to the important role of accurate star ratings in guiding consumer choices and enhancing competitive positioning in the hospitality industry. Method: This study conducted a comprehensive dataset about Hotel in Banyumas Regency, including location, facilities, the size of rooms, type of rooms, price of rooms, and customer reviews, subjected to training through both RF and CART algorithms. Both algorithms are evaluated using accuracy, precision, recall, and F1 score. Additionally, both algorithms due to in the same preprocessing while performing hyperparameter tuning improve the efficacy of each model. Result: The results showed that RF achieved the best overall accuracy and robustness than CART across all tests conducted. Furthermore, RF also outperformed CART in classification effectiveness among classes, including enhanced precision and recall scores across multiple stars rating categories, signifying increased generalization and consistency in classification tasks. RF classifier consistently surpassed the CART classifier in terms of both accuracy and F1-score throughout all random states and test sizes, with a highest score of 0.9932 at a random state of 100 and a test size of 0.4. The most reliable results were obtained using RF with 42 random states and a test size of 0.2, resulting in an accuracy of 0.9909, precision of 1.0, recall of 1.0, and F1 score of 1.0. Simultaneously, CART shows values of 0.9818, 1.0, 1.0, and 1.0, respectively, while maintaining the same variation. This consistent performance, regardless of fluctuations, illustrates the robustness and suitability of RF for classification tasks compared to CART. Novelty: This study offered new insights about the implementation of machine learning about hotel star rating predictions using RF and CART algorithms. Also, the novelty of the collected hotel dataset used in this study. A detailed comparative analysis was also provided, contributing to the existing literature by showing the effectiveness of RF over CART for this specific application. Future studies could explore the integration of additional machine learning methods to further enhance prediction accuracy and operational efficiency in the hospitality industry.
Sistem Pakar Identifikasi Masalah Kulit Wajah Menggunakan Metode Case Based Reasoning Mustafidah, Zahrotul; Utami, Annisaa
Jurnal Komtika (Komputasi dan Informatika) Vol 8 No 2 (2024)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/komtika.v8i2.11614

Abstract

Problems that occur with facial skin reduce women's self-confidence, especially in terms of appearance. Several factors influence the condition of women's facial skin, such as pollution, food and drink consumed, sun exposure, genetic factors, and lack of knowledge in using appropriate products. The MCM Beauty Center Clinic has problems, namely a lack of public awareness, namely people's ignorance about the condition of their facial skin, limited access because they only provide offline consultations and require an appointment first. The aim of this research is to build an expert system that can help to identify early facial skin problems in the form of acne, melasma and spots based on a website. This system will be realized in the form of a website by applying the Case Based Reasoning (CBR) method, which is designed to help patients who have limited time to consult directly with beauty experts. The CBR method has a first stage of collecting data in the form of symptoms from cases that have occurred previously based on experts, then processing the calculation data using nearest neighbors and producing a decision as a treatment suggestion solution. The implementation of a website-based expert system using the CBR method has been tested using black box testing and system precision testing. The results of black box testing of the system went as expected while precision testing showed results of 93% with 28 successful data out of a total of 30 data tested. By applying existing technology and knowledge, this expert system is feasible and useful for users in carrying out more accurate, fast and efficient diagnoses.
Inovasi IoT Biopon BSF Untuk Pengelolaan Sampah Di Unit BUMDes TPST 3R Sokaraja Hebrasianto Permadi, Dimas Fanny; Utami, Annisaa; Dwi Pratiwi, Evia Zunita; Hapiz, Ervan; Hakim Putra Antara, Wildan Daffa’; Dharma Putra, Adhitana
Jompa Abdi: Jurnal Pengabdian Masyarakat Vol. 4 No. 4 (2025): Jompa Abdi: Jurnal Pengabdian Masyarakat
Publisher : Yayasan Jompa Research and Development

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57218/jompaabdi.v4i4.2178

Abstract

Pengelolaan sampah organik di Unit BUMDes TPST 3R Sokaraja masih menghadapi kendala dalam efisiensi dan pemantauan. Black Soldier Fly (BSF) mampu menguraikan sampah organik dengan cepat sekaligus menghasilkan pupuk organik (kasgot) dan pakan ternak bernilai ekonomis. Pengabdian masyarakat ini bertujuan mengoptimalkan pengelolaan sampah melalui biopon BSF berbasis Internet of Things (IoT) untuk monitoring real-time kondisi biopon, termasuk suhu, kelembaban, dan volume sampah. Metode yang diterapkan meliputi instalasi biopon, pemasangan sensor IoT, pelatihan pengurus BUMDes, dan evaluasi pengurangan sampah serta kualitas produk sampingan. Hasil menunjukkan sistem ini mempermudah pemantauan, mempercepat penguraian sampah organik, dan menghasilkan kasgot serta pakan ternak berkualitas. Inovasi ini mendukung pengurangan sampah organik sekaligus memberikan nilai ekonomi tambahan bagi masyarakat desa
Implementasi Case Based Reasoning untuk Mendiagnosis Gangguan Kesehatan Mental Aulia Romadloni Nur Indarti; Utami, Annisaa; Arifa, Amalia Beladinna
Jurnal Informatika Polinema Vol. 12 No. 1 (2025): Vol. 12 No. 1 (2025)
Publisher : UPT P2M State Polytechnic of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jip.v12i1.7470

Abstract

Kesehatan mental merupakan aspek penting yang memengaruhi kualitas hidup seseorang, tetapi gangguan mental dapat menurunkan kualitas dan fungsi individu secara signifikan. Mengingat prevalensi global yang cukup tinggi dengan 970 juta orang mengalami gangguan mental pada tahun 2019 sehingga menjadi isu yang harus mendapatkan perhatian lebih. Tantangan ini diperkuat oleh keterbatasan layanan kesehatan mental terutama di Indonesia, seperti distribusi tenaga profresional yang tidak merata dan stigma yang beredar di lingkungan. Penelitian ini bertujuan mengembangkan sistem pakar untuk mendiagnosis gangguan kesehatan mental sebagai salah satu langkah preventif. Metode yang digunakan adalah Case Based Reasoning (CBR) dengan algoritma K-Nearest Neighbor (KNN) sebagai perhitungan nilai kemiripannya. CBR bekerja dengan memanfaatkan kasus-kasus sebelumnya untuk menyelesaikan suatu masalah atau kasus yang baru. Proses CBR melibatkan tahapan retrieve, reuse, revise, dan retain. Sistem pakar berbasis website ini berhasil diimplementasikan dan diuji. Pengujian black box testing menunjukkan bahwa fitur pada sistem berfungsi dengan baik. Sedangkan, uji validitas sistem dilakukan dengan membandingkan hasil diagnosis sistem dengan diagnosis pakar menghasilkan tingkat akurasi sebesar 80%. Dengan akurasi tersebut, sistem ini diharapkan dapat mempermudah masyarakat dan tenaga kesehatan dalam melakukan proses diagnosis awal, sehingga memfasilitasi penanganan lebih lanjut dan meningkatkan kualitas hidup penderita gangguan kesehatan mental.