Claim Missing Document
Check
Articles

Found 3 Documents
Search

DISTRIBUTION OF PARASTATISTICS FUNCTIONS: AN OVERVIEW OF THERMODYNAMICS PROPERTIES R. Yosi Aprian Sari; W. S. B. Dwandaru
Jurnal Sains Dasar Vol 4, No 2 (2015): October 2015
Publisher : Faculty of Mathematics and Natural Science, Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (305.487 KB) | DOI: 10.21831/jsd.v4i2.9096

Abstract

This study aims to determine the thermodynamic properties of the parastatistics system of order two. The thermodynamic properties to be searched include the Grand Canonical Partition Function (GCPF) Z, and the average number of particles N. These parastatistics systems is in a more general form compared to quantum statistical distribution that has been known previously, i.e.: the Fermi-Dirac (FD) and Bose-Einstein (BE). Starting from the recursion relation of grand canonical partition function for parastatistics system of order two that has been known, recuresion linkages for some simple thermodynamic functions for parastatistics system of order two are derived. The recursion linkages are then used to calculate the thermodynamic functions of the model system of identical particles with limited energy levels which is similar to the harmonic oscillator. From these results we concluded that from the Grand Canonical Partition Function (GCPF), Z, the thermodynamics properties of parastatistics system of order two (paraboson and parafermion) can be derived and have similar shape with parastatistics system of order one (Boson and Fermion). The similarity of the graph shows similar thermodynamic properties. Keywords: parastatistics, thermodynamic properties
Electromagnetics Properties of Non-Relativistic Deuteron in Ground State R. Yosi Aprian Sari; Denny Darmawan
INDONESIAN JOURNAL OF APPLIED PHYSICS Vol 6, No 01 (2016): IJAP VOLUME 06 ISSUE 01 YEAR 2016
Publisher : Department of Physics, Sebelas Maret University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.13057/ijap.v6i01.1802

Abstract

Proton-neutron interaction that makes up deuteron is a mixture state of ????13 dan ????13, which are each associated with a state ????=0, ????=1 and ????=2, ????=1. In the proton-neutron interaction, there are particle exchanges of medium range (1 fm≤????≤2 fm) i.e. scalar meson exchange and the long range (????>2 fm) i.e. one pion exchange. The electromagnetic properties of non-relativistic deuteron in the ground state can be found from the coupled differential equation, such as magnetic dipole moment, 〈????D〉=0.856521???????? and electrical quadrupole moment, 〈????D〉=0.00291396 b.
STUDI INTERAKSI DUA NUKLEON DAN FENOMENA KRITIS POTENSIAL YUKAWA INTERACTION STUDY OF TWO NUCLEONS AND CRITICAL PHENOMENON OF THE POTENTIAL YUKAWA Bima Anang Dwijaya; R. Yosi Aprian Sari
Jurnal Ilmu Fisika dan Terapannya (JIFTA) Vol 6, No 4 (2017): Jurnal Fisika
Publisher : Prodi Fisika, Departemen Pendidikan Fisika

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

AbstrakPenelitian ini bertujuan untuk mengetahui nilai energi ikat inti pada interaksi dua nukleon dalam besaran komputasi (tak bersatuan), mengetahui hubungan antara jangkauan interaksi nukleon (1/α)terhadap nilai konstanta kopling (λ) dan mengetahui hubungan antara (αc) sebagai fungsi (l). Penelitian ini menggunakan persamaan Schrodinger yang mengandung potensial efektif (potensial Yukawa dan potensial sentrifugal). Metode yang digunakan untuk penyelesaian persamaan Schrodinger di penelitian ini adalah metode beda hingga (finite difference method) dan metode bagi dua (bisection method) untuk menentukan swanilai sebagai nilai energi ikat inti. Hasil penelitian ini menunjukkan bahwa semakin besar nilai konstanta kopling (λ) pada bilangan kuantum l=0, maka semakin besar pula jangkauan interaksi antar nukleon (1/α). Pada l = 0 untuk λ = 1, 2, 3, 4, 5 secara berurutan adalah -5.5706×10-5, -3.9383×10-5, -4.2967×10-5, -3.6282×10-5, -5.6721×10-5. Pada l = 1 untuk nilai λ= 2, 3, 4, 5 secara berurutan adalah -2.8020×10-4, -1.6167×10-4, -3.6391×10-4, -2.7500×10-4. Pada l = 2 untuk λ = 3, 4, 5 secara berurutan adalah -3.1003×10-4, -4.7158×10-4, -4.7541×10-4. Pada l = 3 untuk λ = 4, 5 secara berurutan adalah -5.8623×10-4, -3.8635×10-4. Pada l = 4 untuk λ =5  adalah -1.1960×10-3. Pada konstanta kopling (λ) tetap, nilai kritis (αc) menurun secara eksponensial terhadap berbagai nilai bilangan kuantum momentum sudut (l) dengan fungsi αc(l) = λ[A1 exp(-l/B1)+ A2 exp (-l/B2)] dengan A1=0.83227, B1=0.41485, A2=0.00954 dan B2=0.04329. Kata kunci: potensial Yukawa, energi ikat, nukleon AbstractThis study aims to determine the value of the nucleus binding energy on the interaction of two nucleons in the unit of computing (non dimensionless). The second aim is to determine the relation between the range of interaction of nucleons (1 / α) to the value of coupling constants (λ). The last is to determine the relation between (αc) as a function of (l).This study uses the Schrodinger equation containing effective potential (Yukawa potential and centrifugal potential). The method used to solve the Schrodinger equation in this study the finite difference method and bisection method to determine eigenvalue as a nucleus binding energy.The results of this study showed that the greater the value of the coupling constants (λ) on the quantum number l = 0, the greater the range of interactions between nucleons (1 / α). At l = 0 for λ = 1, 2, 3, 4, 5 the range of interactions are:  -5.5706×10-5, -3.9383×10-5, -4.2967×10-5, -3.6282×10-5, -5.6721×10-5  respectively , at l = 1 to the value λ = 2, 3, 4, 5 the range of interactions are: -2.8020×10-4, -1.6167×10-4, -3.6391×10-4, -2.7500×10-4 respectively, at l = 2 for λ = 3, 4, 5 the range of interactions are: -3.1003×10-4, -4.7158×10-4, -4.7541×10-4 respectively, at l = 3 for λ = 4, 5 the range of interactions are -5.8623×10-4, -3.8635×10-4 respectively, at l = 4 for λ = 5 is -1.1960×10-3. With a constant the coupling constants (λ), the critical value (αc) decreases exponentially with respect to various values of the angular momentum quantum number (l) with the function αc (l) = λ [A1 exp (-l / B1) + A2 exp (-l / B2)] where A1=0.83227, B1=0.41485, A2=0.00954 and B2=0.04329.