Claim Missing Document
Check
Articles

Found 20 Documents
Search

Pemanfaatan Tools Animasi Untuk Media Pembelajaran Bagi SMKN 1 Labang Bangkalan Madura Arik Kurniawati; Indah Agustien Siradjuddin; Mochammad Kautsar Sophan; Ariesta Kartika Sari; Puji Rahayu Ningsih; Wanda Ramansyah
JPPM (Jurnal Pengabdian dan Pemberdayaan Masyarakat) VOL. 4 NOMOR 2 SEPTEMBER 2020 JPPM (Jurnal Pengabdian dan Pemberdayaan Masyarakat)
Publisher : Lembaga Publikasi Ilmiah dan Penerbitan (LPIP)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1448.116 KB) | DOI: 10.30595/jppm.v4i2.6796

Abstract

Media pembelajaran merupakan salah satu aspek terpenting dalam proses pembelajaran, karena akan membantu siswa dalam memahami ceramah yang diberikan oleh guru. Seiring tumbuhnya teknologi informasi di Era Industrial 4.0, maka sebaiknya media pembelajaran yang digunakan juga menggunakan teknologi informasi terbaru yang dibuat semenarik mungkin sehingga menimbulkan semangat siswa dalam memperhatikan dan memahami mata pelajaran yang diajarkan. Dalam pengabdian ini, digunakan Animaker, sebagai tools untuk membuat media pembelajaran, karena memiliki banyak fitur, selain itu media ini dapat dilihat dan dipelajari oleh siswa kapan saja, di mana saja dengan smartphone yang mereka miliki. Pemanfaatan tools Animasi sebagai Media Pembelajaran dilakukan di SMKN 1 Labang, Bangkalan, Madura. Ada empat langkah utama untuk membangun media pembelajaran menggunakan Animaker, yaitu menentukan topik ceramah; memilih karakter yang sesuai dan juga property; mendefinisikan adegan; dan langkah terakhir adalah mendesain scene. Bentuk kegiatan ini adalah pelatihan tentang cara membuat media pembelajaran menggunakan Animaker dan selanjutnya adalah pendampingan dalam mengerjakan tugas untuk membuat projek sesuai dengan mata pelajaran yang meraka ajarkan. Berdasarkan pelatihan dan tugas proyek yang diberikan ini, Animaker dapat digunakan sebagai tools yang menarik untuk membuat media pembelajaran.
GAME EDUKASI BERBASIS KINECT UNTUK MEMPERKENALKAN BENTUK DAN WARNA BAGI SISWA BERKEBUTUHAN KHUSUS Ach Khozaimi; Ari Kusumaningsih; Arik Kurniawati; Rima Tri Wahyuningrum
Network Engineering Research Operation Vol 7, No 2 (2022): NERO
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/nero.v7i2.424

Abstract

Pada era digital saat ini, inovasi pembelajaran perlu dilakukan, terutama media pembelajaran bagi siswa atau anak berkebutuhan khusus. Banyak media pembelajaran yang sudah dikembangkan oleh para peneliti, namun masih belum bisa memikat minat siswa untuk menggunakannya karena dianggap kurang menarik. Anak berkebutuhan khusus membutuhkan pola pembelajaran khusus untuk meningkatkan kemampuan dasar akademik, kognitif, dan psikomotorik mereka. Dalam penelitian ini telah dilakukan pengembangan dan uji kelayakan media pembelajaran berupa game edukasi yang dirancang untuk meningkatkan rasa ingin tahu dan motivasi belajar dan berlatih bagi anak dengan kebutuhan khusus, menggunakan metode ADDIE.  Penelitian ini menghasilkan sebuah game edukasi sebagai pendekatan baru untuk mengenalkan bentuk dan warna kepada anak berkebutuhan khusus. Game ini juga menggunakan kontroler Microsoft Kinect yang akan membantu perkembangan motorik kasar pada anak berkebutuhan khsusus karena anak akan memainkan game ini dengan menggerakkan tangan dan badannya. Berdasarkan hasil angket kepada guru yang sudah mencoba game edukasi ini menyatakan layak dengan nilai rata-rata 3.10 berdasarkan empat kategori skala Likert.
Automatic note generator for Javanese gamelan music accompaniment using deep learning Arik Kurniawati; Eko Mulyanto Yuniarno; Yoyon Kusnendar Suprapto; Aditya Nur Ikhsan Soewidiatmaka
International Journal of Advances in Intelligent Informatics Vol 9, No 2 (2023): July 2023
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v9i2.1031

Abstract

Javanese gamelan is a traditional form of music from Indonesia with a variety of styles and patterns. One of these patterns is the harmony music of the Bonang Barung and Bonang Penerus instruments. When playing gamelan, the resulting patterns can vary based on the music’s rhythm or dynamics, which can be challenging for novice players unfamiliar with the gamelan rules and notation system, which only provides melodic notes. Unlike in modern music, where harmony notes are often the same for all instruments, harmony music in Javanese gamelan is vital in establishing the character of a song. With technological advancements, musical composition can be generated automatically without human participation, which has become a trend in music generation research. This study proposes a method to generate musical accompaniment notes for harmony music using a bidirectional long-term memory (BiLSTM) network and compares it with recurrent neural network (RNN) and long-term memory (LSTM) models that use numerical notation to represent musical data, making it easier to learn the variations of harmony music in Javanese gamelan. This method replaces the gamelan composer in completing the notation for all the instruments in a song. To evaluate the generated harmonic music, note distance, dynamic time warping (DTW), and cross-correlation techniques were used to measure the distance between the system-generated results and the gamelan composer's creations. In addition, audio features were extracted and used to visualize the audio. The experimental results show that all models produced better accuracy results when using all features of the song, reaching a value of around 90%, compared to using only 2 features (rhythm and note of melody), which reached 65-70%. Furthermore, the BiLSTM model produced musical harmonies that were more similar to the original music (+93%) than those generated by the LSTM (+92%) and RNN (+90%). This study can be applied to performing Javanese gamelan music.
Coloring Pekalongan Batik Using a Madura Dataset: A Comparative Study of GAN and Caffe-Based CNN Models Wahyudi, Muhamad Machrus Ali; Kurniawati, Arik; Damayanti, Fitri; Purnawan, I Ketut Adi
Teknika Vol. 13 No. 3 (2024): November 2024
Publisher : Center for Research and Community Service, Institut Informatika Indonesia (IKADO) Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34148/teknika.v13i3.1071

Abstract

Madura Batik, as one of Indonesia's valuable cultural heritages, is known for its unique characteristics involving the use of bright colors such as red, yellow, and green, as well as traditional motifs that often feature elements of nature like flowers, leaves, and animals. Each motif in Madura Batik reflects the rich philosophy, values, and stories of Madura culture. This batik is also famous for its production process, which is largely carried out manually using traditional dyeing techniques. However, with the advancement of technology, there is a growing need to integrate technological innovations into the batik dyeing process without losing its traditional essence. This research combines Generative Adversarial Networks (GAN) models and compares them with Caffe-based pretrained Convolutional Neural Networks (CNN) to create new color variations in Pekalongan batik images. The input for the models is grayscale batik images, which are then processed to generate colorful outputs. The dataset used consists of 519 Madura batik images, with a distribution of 80% for training, 20% for validation, and 10 images for testing. The preprocessing process includes resizing, normalization, and batching to accelerate model convergence. Performance evaluation is conducted using FID, MSE, PSNR, and SSIM metrics. The results show that the GAN model with 100 epochs produces better image quality compared to the Caffe-based pretrained CNN model, particularly in terms of visual and structural similarity. In conclusion, the GAN method offers great potential for innovation in batik coloring without compromising its traditional motifs.
Optimizing Diabetic Neuropathy Severity Classification Using Electromyography Signals Through Synthetic Oversampling Techniques Purnawan, I Ketut Adi; Wibawa, Adhi Dharma; Kurniawati, Arik; Purnomo, Mauridhi Hery
Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI Vol. 13 No. 3 (2024)
Publisher : Prodi Pendidikan Teknik Informatika Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/janapati.v13i3.85675

Abstract

Electromyography signals are electrical signals generated by muscle activity and are very useful for analyzing the health conditions of muscles and nerves. Data imbalance is a prevalent issue in EMG signal data, especially when addressing patients with varied health conditions and restricted data availability. A major difficulty for machine learning models is class imbalance in datasets, which frequently leads to biased predictions favoring the dominant class and neglecting the minority classes. The data augmentation method employs the Synthetic Minority Over Sampling Technique (SMOTE) and Random Over Sampling (ROS) to address data imbalances and enhance the performance of classification models for underrepresented classes. This study employs an oversampling technique to enhance the efficacy of the XG Boost model. SMOTE exhibits better efficacy relative to competing methods; the application of appropriate oversampling techniques allows models to integrate patterns from both majority and often neglected minority data.
The Comparison of GAN and CNN Models in the Innovation of Coloring Madura and Bali Batik Permana, Yohan; Kurniawati, Arik; Damayanti, Fitri; Purnawan, I Ketut Adi
JAREE (Journal on Advanced Research in Electrical Engineering) Vol 9, No 2 (2025): July
Publisher : Department of Electrical Engineering ITS and FORTEI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/jaree.v9i2.467

Abstract

This study aims to innovate automatic coloring of batik patterns using deep learning models. Specifically, it compares the performance of Generative Adversarial Network (GAN) with pretrained Caffe-based Convolutional Neural Networks (CNN) in coloring images of Madura and Bali batik. The dataset consists of 388 Madura batik images for training, 97 for validation, and 20 distinct images of both Bali and Madura batik for testing. This dataset was obtained through web scraping from batik posts on social media platforms like Instagram, Bing Image Search using specific keywords, and Kaggle, followed by a manual combination and cleaning process. The GAN model was trained with varying epochs (40, 80, 150), while the CNN utilized pretrained Caffe weights. Evaluation was conducted using Peak Signal-to-Noise Ratio (PSNR), Fréchet Inception Distance (FID), Mean Squared Error (MSE), and Structural Similarity Index (SSIM). The results indicate that the GAN model with 150 epochs outperformed the CNN, achieving a PSNR of 29.702, an FID of 84.016, an MSE of 511.8812, and an SSIM of 0.9925, demonstrating superior color creation and artistic detail in batik. Conversely, the CNN model exhibited lower performance, with a PSNR of 28.218, an FID of 200.271, and an SSIM of 0.7925, indicating its limitations in preserving the intricate patterns and colors of batik. This research demonstrates the applicability of GAN in automatic batik coloring, potentially providing innovative solutions for the batik industry while maintaining the cultural and artistic integrity of traditional designs.
Innovative AI-Based Digital Learning through E-Books and Videos: A Strategy to Support the Merdeka Curriculum in Primary Schools Kurniawati, Arik; Ningsih, Puji Rahayu; Rahmawati , Aminah Dewi
Journal of Action Research in Education Vol. 3 No. 1: 2025
Publisher : Sekolah Tinggi Agama Islam Nurul Islam Mojokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52620/jare.v3i1.179

Abstract

This project aims to enhance teachers' ability to use AI-based digital learning media, such as videos and digital books, to implement the Merdeka Curriculum in elementary schools. Participatory action research was used as the research method, and the activities were implemented at SDIT Ulil Albab Kamal Bangkalan in the form of initial observations, training sessions, project facilitation, and evaluations. The result of the pre-training survey showed that most of the teachers were unfamiliar with how AI can be relevant to education materials. Training increased the knowledge and skills of teachers, as evidenced by their ability to create innovative, curriculum-based teaching videos and digital books with interactive content. This study demonstrates that incorporating AI into teacher preparation enhances teaching quality and reinforces teachers' roles as 21st-century learning facilitators.
Implementasi Metode Euclidean Distance untuk Rekomendasi Ukuran Pakaian pada Aplikasi Ruang Ganti Virtual Rizaldi, Rezky; Kurniawati, Arik; Angkoso, Cucun Very
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 5 No 2: April 2018
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (413.146 KB) | DOI: 10.25126/jtiik.201852592

Abstract

Perkembangan jual beli garmen secara online, dihadapkan pada kenyataan adanya 70% pengembalian produk oleh pembeli, akibat ketidaksesuaian antara harapan dan kenyataan model serta ukuran garmen. Kehadiran virtual fitting room secara online, diharapkan mampu mengurangi adanya pengembalian produk, memberikan pengaruh positif terhadap keistimewaan suatu produk, keinginan untuk membeli dan kepastian membeli secara online. Virtual Fitting Room ini bisa diimplementasikan pada toko online ataupun toko baju seperti biasa. Tahapan penelitian meliputi : penerapan teknologi kinect untuk mendapatkan data skeleton dari calon pembeli yang digunakan sebagai dasar untuk memberikan rekomendasi ukuran pakaian, selanjutnya perhitungan euclidean distance digunakan untuk menghitung ukuran punggung calon pembeli dan terakhir penerapan teknologi augmented reality untuk menampilkan pakaian virtual 3 dimensi yang melekat tepat di badan calon pembeli. Sistem rekomendasi ini mampu menampilkan calon pembeli dengan menggunakan baju virtual 3 dimensi yang sesuai dengan ukuran rekomendasi dari sistem (S,M,L, atau XL). Sistem ini juga memberikan fitur bagi calon pembeli untuk mencoba model pakaian lainnya. Sistem dapat memperlihatkan baju virtual 3 dimensi yang tetap melekat pada badan calon pembeli, ketika melakukan rotasi ke kanan 900, ke kiri 900, balik kanan 1800 dan balik kiri 1800. Hasil uji coba sistem rekomendasi ukuran pakaian ini akan berjalan secara optimal jika pengaturan ketinggian kinect sebesar 55 cm dari tanah. Untuk ketinggian kinect 55cm, 65cm dan 75 cm dari tanah, sistem ini mampu menyajikan kesesuaian rekomendasi ukuran dibandingkan dengan ukuran asli dari calon pembeli sebesar 70%. Kata kunci: kinect, augmented reality, euclidean distance, virtual fitting room  AbstractThe development of online garment sale, faced with the fact that there is 70% return of product by the buyer, due to a mismatch between expectation and reality of model and garment size. The presence of virtual fitting room in the online store is expected to reduce the return of products, give a positive influence on the privilege of a product, the desire to buy and certainty to buy online. Virtual Fitting Room can be implemented in the online store or clothing store as usual. The research stages include the application of Kinect technology to obtain skeleton data from prospective buyers used as a basis for providing system recommendations, then euclidean distance calculation is used to calculate the size back potential buyers, and lastly application of augmented reality technology to display the right three-dimensional virtual clothing in potential buyer body. This recommendation system can present potential buyers by using 3-dimensional virtual shirts attached to their bodies by the recommended size of the system (S, M, L, or XL). This system also provides features for potential buyers to try other clothing models. The system can show a 3-dimensional virtual shirt that remains attached to the body of potential buyers, while rotating right 900, left 900, right turn 1800 and left turn 1800. The test results of this clothing size recommendation system will run optimally if the Kinect height setting of 55 cm from the ground. For the Kinect height of 55cm, 65cm and 75cm from the ground, the system can present the recommended size with the original size of the potential buyer of 70%. Keywords: kinect, augmented reality, euclidean distance, virtual fitting room
Perancangan Aplikasi Learning By Doing Interaktif Untuk Mendukung Pembelajaran Bahasa Pemrograman Sophan, Mochammad Kautsar; Kurniawati, Arik
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 5 No 2: April 2018
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (122.368 KB) | DOI: 10.25126/jtiik.201852608

Abstract

AbstrakPembelajaran bahasa pemrograman adalah salah satu mata kuliah dasar untuk mengembangkan kompetensi keahlian pemrograman di bidang teknik Informatika, salah satunya adalah mata kuliah Algoritma dan Pemrograman. Sesuai dengan analisis instruksional, mata kuliah ini memberikan kompetensi tentang konsep dasar Algoritma Pemrograman yang akan menjadi dasar bagi pengembangan dan penerapan mata kuliah-mata kuliah selanjutnya. Banyak mahasiswa kurang memahami dasar-dasar pemrograman, sehingga menemui kesulitan ketika mengerjakan tugas-tugas mata kuliah yang membutuhkan keahlian pemrograman.Melalui inovasi pembelajaran ini, dikembangkan sebuah media pembelajaran baru dan interaktif bagi mahasiswa dengan mengintegrasikan berbagai faktor yang mempengaruhi permasalahan yang telah disebutkan sebelumnya. Aplikasi learning by doing interaktif untuk mendukung pembelajaran bahasa pemrograman ini dibangun menggunakan pendekatan Web Framework menggunakan Codeigniter. Aplikasi ini juga memanfaatkan fitur share kode pemrograman yang dikembangkan oleh Trinket. Hasil penelitian menunjukan bahwa kebermanfaatan aplikasi ini mampu membuat ketertarikan tehadap belajar pemrograman sebesar 79%. Ketertarikan yang tinggi ini membuat mahasiswa sering mencoba kode-kode program secara mandiri sehingga jumlah mahasiswa yang lulus dengan kemampuan baik selisihnya 14% dibandingkan dengan pembelajaran biasa.Kata kunci: bahasa pemrograman, pembelajaran, learning by doing, trinket AbstractLearning programming language is one of the basic courses to develop the competence of programming skills in Informatics engineering, one of which is the course of Algorithm and Programming.Based on instructional analysis, this lectures provides competence on the basic concepts of Programming Algorithm which will be the basis for the development and application of further lectures. Many students do not understand the basics of programming, so they have difficulty when get assignment that require programming skills.This learning innovation, developed an interactive new learning media that can minimize several factors that affect student learning problems.Application "learning by doing Interactive" to support Learning Programming Language was built using a Web Framework approach using Codeigniter.This application also utilizes the programming code share feature developed by Trinket.The results showed that the usefulness of this application is able to make an interest in learning programming by 79%.This high attractiveness makes students often try the program codes independently and result the ability of the number of students who graduated with a good is 14% compared with ordinary learning.Keywords: programming language, learning, trinket 
Extraction Model for Musical Elements of Javanese Traditional Songs from Gendhing Music Sheets based on Kepatihan Notation Kurniawati, Arik; Arrova Dewi, Deshinta; Satria Erlangga, Bima; Damayanti, Fitri; Oktavia Suzanti, Ika
JOIV : International Journal on Informatics Visualization Vol 9, No 6 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.6.3573

Abstract

Traditional Javanese gamelan music, particularly its songs, is an integral part of Indonesian culture and identity. However, gamelan music notation remains manual, disorganized, and difficult to access. This poses challenges to balanced education, community sustainability, and digital preservation. This study introduces an automated data extraction and gamelan notation transcription process for transforming Javanese gamelan notation in PDF format into a structured CSV. The innovation process involves parsing PDF-based Kepatihan notation, symbol-to-number conversion, musical section recognition (e.g., buka, lagu, suwuk), and organization in gatra units—each of four melodic notes. The process produces detailed metadata, such as song title, tuning (laras), mode (pathet), and gendhing classification. To evaluate extraction accuracy, the validation period also included a comparison of the converted gatra with the original PDF. The results show that the system achieved 100% accuracy on a sample size of 10 gatra and reduced processing time by 97.5% compared with manual methods. The completed dataset consists of 31 gendhing songs, providing an analyzable and scalable collection for future musicological research and education training. This study contributes to the fields of Music Information Retrieval (MIR) and Digital Humanities by enabling the efficient, standardized digitization of historical music notation. This structured dataset empowers the development of automatic notation generators, making inclusive learning tools accessible to novices and facilitating the documentation of cultural heritage through technology.