Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : JAIS (Journal of Applied Intelligent System)

Prediction on Deposit Subscription of Customer based on Bank Telemarketing using Decision Tree with Entropy Comparison Ardytha Luthfiarta; Junta Zeniarja; Edi Faisal; Wibowo Wicaksono
Journal of Applied Intelligent System Vol 4, No 2 (2019): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v4i2.2772

Abstract

Banking system collect enormous amounts of data every day. This data can be in the form of customer information,  transaction  details,  risk profiles,   credit   card   details,   limits   and   collateral    details, compliance  Anti Money Laundering (AML) related information, trade  finance  data,  SWIFT  and  telex  messages. In addition,  Thousands  of decision  are  made in Banking system. For example, banks everyday creates credit decisions,  relationship  start  up,  investment   decisions, AML  and  Illegal  financing  related decision.  To create this decision, comprehensive review on various  reports  and drills  down  tools  provided  by the banking systems is needed.  However, this is a manual process which  is  error  prone  and  time  consuming  due  to  large volume of transactional  and historical  data available. Hence, automatic knowledge mining is needed to ease the decision making process.  This research focuses on data mining techniques to handle the mentioned problem. The technique will focus on classification method using Decision Tree algorithms.  This research provides an overview of the data mining techniques and   procedures will be performed.   It also provides   an insight   into how these techniques can be used in deposit subscription  in banking system to make a decision making process easier and more productive. Keywords - Telemarketing, bank deposit, decision tree, classification, data mining, entropy.
GLCM Based Locally Feature Extraction On Natural Image Edi Faisal; Agung Nugroho; Ruri Suko Basuki; Suharnawi Suharnawi
Journal of Applied Intelligent System Vol 7, No 2 (2022): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v7i2.6569

Abstract

GLCM is a feature extraction method that uses statistical analysis using a gray scale. Contrast, correlation, energy and entropy are feature features whose value will be sought as the basis for finding the threshold which can then be used to find the threshold value in image segmentation. In this study, a local-based GLCM method is used where the image that has been made into grayscale will be divided into 16 parts of the same size. Each section will look for the value of its GLCM features, namely Contrast, correlation, energy and entropy. The calculation of these four features will be applied to 16 parts of the grayscale image, which can then be used to find the threshold value. The results of the four features in the calculation with an angle of 0o are the contrast value = 0.0080, correlation = 0.619, energy : 0.00160 and entropy : 0.05591.