Claim Missing Document
Check
Articles

Found 35 Documents
Search

Algoritma Pengenalan Ucapan Huruf Hijaiyah Bertanda Baca Menggunakan Mel Frequency Cepstral Coefficients dan Hidden Markov Model Andrian Fakhri; Adiwijaya .; Untari Novia Wisesty
Indonesia Symposium on Computing Indonesia Symposium on Computing (IndoSC) 2016
Publisher : Indonesia Symposium on Computing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Speech recognition merupakan sebuah metode yang dapat mengubah sinyal-sinyal suara ke dalam bentuk data digital agar dapat dipahami computer. Sistem pengenalan suara terdiri dua bagian utama yaitu proses ekstraksi ciri dan klasifikasi. Pada penelitian ini penulis menggunakan metode MelFrequency Ceptral Coefficient (MFCC) pada proses ekstraksi ciri bertujuan untuk mendapatkan informasi penting yang terkandung dalam sinyal suara, informasi tersebut akan merepresentasikan karakteristik khusus dari suatu huruf atau kata yang diucapkan. Untuk proses klasifikasi dan pembentukan model penulis menggunakan metode Hidden Markov Model (HMM), setiap data yang dimodelkan menggunakan metode ini akan menghasilkan model HMM, maka jumlah model akan sama dengan jumlah data yang di training. Sistem speech recognition juga dapat diterapkan pada sistem pengenalan ucapan huruf hijaiyah. Setelah penulis melakukan pengujian terhadap sistem dengan menggunakan 128 codebook dan 7 states untuk mengenali 168 huruf yang berbeda didapat tingkat akurasi tertinggi 41%. Dan saat pengujian untuk mengenali 28 huruf akurasi tertinggi yang mencapai 57%.
Implementasi Gabor Wavelet dan Support Vector Machine pada Deteksi Polycystic Ovary (PCO) Berdasarkan Citra Ultrasonografi Untari Novia Wisesty
Indonesia Journal on Computing (Indo-JC) Vol. 1 No. 2 (2016): September, 2016
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/INDOJC.2016.1.2.90

Abstract

Ketidaksuburan adalah kondisi pasangan suami istri yang susah memiliki keturunan. Salah satu pemeriksaan kesuburan yang dianjurkan di bidang kesehatan adalah USG (Ultrasonografi). Untuk memeriksa kesuburan wanita dilakukan USG rahim dengan memeriksa keberadaan penyakit di rahim yang menyebabkan kemandulan, salah satunya adalah PCO (Polycystic Ovary), dengan melihat jumlah dan ukuran folikel dalam ovarium. Namun, sampai saat ini penentuan hasil USG rahim masih dilakukan secara manual oleh Dokter Spesialis Kandungan. Penelitian ini bermaksud untuk membantu ahli medis dalam mendiagnosa kesuburan wanita berdasarkan keberadaan PCO secara terkomputerisasi, sehingga hasil diagnosa dapat dilakukan dengan cepat dan akurat. Proses pendektesian diawali dengan pemrosesan awal pada citra USG dan ekstraksi ciri menggunakan Gabor Wavelet. Selanjutnya, pada tahap klasifikasi PCO digunakan metode Support Vector Machine (SVM). Kernel SVM yang digunakan sebagai classifier adalah fungsi kernel Linear, RBF, Kuadratik, dan Polinomial sesuai dengan kebutuhan persebaran data, dengan nilai parameter C kelipatan 10 dari rentang 0 hingga 300. Dengan menggunakan metode-metode tersebut, pencapaian akurasi tertinggi didapatkan dengan menggunakan parameter Gabor Wavelet dan SVM yang terbaik yaitu kernel polynomial, C=160, mask 17x17, frekuensi 2, 3, 4, 5 Hz dan sudut orientasi [π/6; π/6; π] dengan akurasi uji 78.4661% dan akurasi latih 75.5480% berdasarkan pengujian per-folikel.
Klasifikasi Keadaan Mata Berdasarkan sinyal EEG menggunakan Extreme Learning Machines Ersa Christian Prakoso; Untari Novia Wisesty; Jondri .
Indonesia Journal on Computing (Indo-JC) Vol. 1 No. 2 (2016): September, 2016
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/INDOJC.2016.1.2.105

Abstract

Electroencephalography atau sinyal EEG adalah salah satu biosignal yang marak menjadi topikpenelitian saat ini. Sinyal EEG memiliki banyak manfaat seperti pendeteksian epilepsi, gangguantidur, atau input dalam aplikasi komputer. Salah satu input yang dapat dideteksi berdasarkan sinyalEEG adalah keadaan mata. Namun untuk digunakan sebagai input dalam aplikasi diperlukanklasifikasi dengan performansi yang memadai. Oleh karena itu penulis akan dilakukan penelitiandimana salah satu metode pembelajaran Jaringan Syaraf Tiruan yaitu Extreme Learning Machine(ELM) akan diimplementasikan untuk mengklasifikasikan kondisi mata berdasarkan sinyal EEG.Dataset yang digunakan untuk melatih dan menguji model adalah dataset eye-state yangdidonasikan oleh Oliver Roesler digabung dengan dataset yang berasal dari website repositoryUniversitas of California, IrvineI (UCI) . Terdapat 7 corpus yang terdiri dari perekaman EEGyang dilakukan kepada 4 orang berbeda, lalu ditambahkan 1 corpus yang merupakanpenggabungan seluruh corpus lain. Dari hasil pengujian yang dilakukan disimpulkan bahwa ELMdapat digunakan untuk klasifikasi keadaan mata dengan akurasi mencapai 97,95% dengan waktulatih hanya 0,81 detik jika masing-masing data digunakan secara terpisah, sedangkanpenggabungan keseluruhan dataset hanya mencapai akurasi 78,94% dengan waktu latih 5,71 detik.
Deteksi Kanker berdasarkan Klasifikasi Data Microarray menggunakan Functional Link Neural Network dengan Seleksi Fitur Genetic Algorithm Putri Tsatsabila Ramadhani; Untari Novia Wisesty; Annisa Aditsania
Indonesia Journal on Computing (Indo-JC) Vol. 2 No. 2 (2017): September, 2017
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/INDOJC.2017.2.2.173

Abstract

Di beberapa tahun terakhir, pemanfaatan teknologi microarray memiliki pengaruh besar dalam menentukan gen informatif yang menyebabkan kanker. Micorarray mampu menentukan ekspresi ribuan gen dan secara simultan memantau proses bilogis yang sedang berlangsung. Dengan melakukan analisa terhadap data micorarray, selanjutnya ekspresi dari ribuan gen yang merepresentasikan suatu jaringan pada manusia, akan diklasifikasikan sebagai jaringan kanker atau bukan. Dalam penulisan penelitian penelitian, penulis meng-implementasikan Functional Link Neural Network dengan fungsi basis Legendre Polynomial untuk klasifikasi data yang akurat dan menggunakan Genetic Algorithm sebagai seleksi fitur untuk mereduksi data berdimensi tinggi yang sering ditemukan pada data microarray. Dengan serangkaian proses yang telah dilakukan, maka diperoleh kinerja tertinggi terhadap klasifikasi data microarray Colon Tumor sebesar 92.3% dan Leukemia sebesar 87.5%. Perbedaan kinerja yang diperoleh disebabkan oleh perbedaan karakteristik masing-masing data.
Analisis dan Implementasi Metode Gabor Filter dan Support Vector Machine pada Klasifikasi Sidik Jari Intan Raharni Wijaya; Untari Novia Wisesty; Said Al Faraby
Indonesia Journal on Computing (Indo-JC) Vol. 2 No. 2 (2017): September, 2017
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/INDOJC.2017.2.2.176

Abstract

Pengolahan citra digital semakin diminati, salah satunya pada sistem biometrik. Sistem biometrik merupakan sistem dalam pengenalan berdasarkan pola atau ciri khusus yang dimiliki makhluk hidup terutama manusia. Jenis identifikasi biometrik yang umum digunakan adalah pengenalan sidik jari. Sidik jari banyak digunakan dalam kehidupan sehari-hari selama lebih dari 100 tahun karena penerimaan yang tinggi, permanen, akurat, dan keunikan. Kelebihan sidik jari tersebut disebabkan oleh minutiae yang merupakan garis atau guratan pada sidik jari yang berbeda-beda setiap individu. Klasifikasi sidik jari secara umum terbagi menjadi dua tahap yakni ekstraksi fitur serta klasifikasi fitur.   Ektraksi fitur dapat dilakukan dengan cara filter seperti gabor filter dengan empat sudut orientasi yang berkisar 0, 45, 90 dan 135 derajat. Hasil dari ekstraksi ciri akan klasifikasi dengan tujutan identifikasi. Metode Support Vector Machine (SVM) dapat digunakan sebagai classifier untuk sistem biometrik sidik jari. SVM memiliki kernel trick yang berpengaruh pada akurasi yang dihasilkan. Digunakan SVM multiclass metode one-against-all dalam klasfikasi sidik jari untuk 25 kelas. Akurasi terbesar diperoleh oleh kernel Radial Basis Function (RBF) sebesar 73% untuk data awal dan 76% untuk penambahan data augmentasi
Eye State Prediction Based on EEG Signal Data Neural Network and Evolutionary Algorithm Optimization Untari Novia Wisesty; Hifzi Priabdi; Rita Rismala; Mahmud Dwi Sulistiyo
Indonesia Journal on Computing (Indo-JC) Vol. 5 No. 1 (2020): Maret, 2020
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2020.5.1.372

Abstract

Eye state prediction is one study using EEG signals obtained to predict the state of the human eye several moments before. In its development, many researchers also have built eye states detection schemes, but the system built is only limited to classifying one record of input data obtained from the Emotive EPOC headset channel into the eye state. Therefore, this paper proposed eye state prediction system where the system can predict the state of the human eye some time previously based on the EEG signal series used. The proposed system consists of two parts, namely the prediction of the EEG signal value and eye state detection based on the value of the signal that has been obtained using Differential Evolution and Neural Network optimized by Evolution Strategies, respectively. The highest accuracy obtained from the eye state prediction system that has been built is 73.2%. These results are obtained by the best combination of parameters from the three methods used.
Levenberg-Marquardt Neural Network for Eye States Detection Based on Electroencephalography Data Untari Novia Wisesty
International Journal on Information and Communication Technology (IJoICT) Vol. 2 No. 1 (2016): June 2016
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/IJOICT.2016.21.72

Abstract

The eye state detection is one of various task toward Brain Computer Interface system. The eye state can be read in brain signals. In this paper use EEG Eye State dataset (Rosler, 2013) from UCI Machine Learning Repository Database. Dataset is consisting of continuous 14 EEG measurements in 117 seconds. The eye states were marked as “1” or “0”. “1” indicates the eye-closed and “0” the eye-open state. The proposed schemes use Multi Layer Neural Network with Levenberg Marquardt optimization learning algorithm, as classification method.  Levenberg Marquardt method used to optimize the learning algorithm of neural network, because the standard algorithm has a weak convergence rate. It is need many iterations to have minimum error. Based on the analysis towards the experiment on the EEG dataset, it can be concluded that the proposed scheme can be implemented to detect the Eye State. The best accuracy gained from combination variable sigmoid function, data normalization and number of neurons are 31 (95.71%) for one hidden layer, and 98.912% for two hidden layers with number of neurons are 39 and 47 neurons and linear function.
Sentiment Analysis of Movie Review using Naïve Bayes Method with Gini Index Feature Selection Riko Bintang Purnomoputra; Adiwijaya Adiwijaya; Untari Novia Wisesty
Journal of Data Science and Its Applications Vol 2 No 2 (2019): Journal of Data Science and Its Applications
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/jdsa.2019.2.36

Abstract

In movie reviews, there is information that determines whether the movie is good or bad. Sentiment analysis is used to process information to determine the polarity of the sentence. With unstructured reviews and a lot of data attributes so that it requires much time and computational capabilities that become a problem in the classification process. To process a lot of data selection features becomes a solution to reduce dimensions so it accelerate the classification process and reduce the occurrence of misclassification. The first Gini Index Text feature selection used to classify documents and successfully enhanced the classifier performance. Multinomial Naïve Bayes (MNNB) is a popular classifier used for document classification however, will the Gini Index Text feature selection able to improve MNNB classification performance. Therefore in this study the author aims to use the Gini Index Text (GIT) for text feature selection with MNNB classifier to classify movie review into positive and negative classes. The data used is IMDB dataset that contains reviews in English sentences, the data will be divided into two parts, training data is 90% and data testing is 10%. The test results prove that the Gini index as a selection feature can increase accuracy where accuracy without feature selection is 56% and with feature selection of 59.54% with an increase of 3.54%.
PERBANDINGAN PEMBOBOTAN UNTUK KLASIFIKASI TOPIK BERITA MENGGUNAKAN DECISION TREE Henri Tantyoko; Adiwijaya Adiwijaya; Untari Novia Wisesty
JURNAL TEKNOLOGIA Vol 2 No 1 (2019): Jurnal Teknologia
Publisher : Aliansi Perguruan Tinggi Badan Usaha Milik Negara (APERTI BUMN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (8311.757 KB)

Abstract

News is a media to add insight into the outside world, many events that can not be known directly, because it is news that can make it easier to find out more extensive information about the increase. News dissemination consists of online for internet and offline for print media. In the present era, the development of the internet is very fast, making it easier to access information, media delivery of news becomes varied with the internet. Many news available online cause problems because news published by publishers can make mistakes in categorizing news content into the right category. Need technical contributions to categorize news automatically. Categorization of the method used. In this study, the authors used the Decision Tree classification method. A process that is no less important before classification is the word weighting technique. To get optimal accuracy, the authors combine classification techniques using Decision Tree with word weighting techniques TF.ABS, TF.CHI2, TF.RF and TF.IDF. Receive TF.ABS which has the
Klasifikasi Berita Bahasa Indonesia Menggunakan Mutual Information dan Support Vector Machine Lalu Gias Irham; Adiwijaya Adiwijaya; Untari Novia Wisesty
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 3, No 4 (2019): Oktober 2019
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v3i4.1410

Abstract

News is a source of information disseminated in various types of media. In order to make it easier for news readers to obtain the desired news, the news needs to be classified. The large number of scattered news creates difficulties in classifying the news based on the topic. Therefore the author conducted a study to classify news into 12 classes (culture, economy, entertainment, law, health, life, automotive, education, politics, sports, technology, and tourism) automatically against 360 Indonesian news data. In this study several test scenarios were conducted to see the effect of stopword removal and stemming methods on data preprocessing, the effect of mutual information in selecting features, and performance of Support Vector Machine in classifying news data. The test results showed that the data using only stemming without stopword removal, using the MI selection feature and SVM classification method produced the best results of 94.24%, compared to the other methods.