Rinny Jelita
Program Studi Teknik Kimia Fakultas Teknik Universitas Lambung Mangkurat Jl. A. Yani Km. 36 Banjarbaru Kalimantan Selatan 70714 Indonesia

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 7 Documents
Search

Recovery of Aluminum from Aluminum Coated Plastic Waste using Pyrolysis Process Chairul Irawan; Rinny Jelita; Iryanti Fatyasari Nata
Reaktor Volume 18 No. 1 March 2018
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (884.691 KB) | DOI: 10.14710/reaktor.18.1.38-44

Abstract

This study aims to separate aluminum metal in aluminum coated plastic waste so that it is known the obtained aluminum characteristics, to study the effects of temperature on the yield of solids and aluminum,  and to get the kinetic parameters that describe the effects of temperature on pyrolysis process rate. Plastic waste was cleaned, dried, cut, and weighed as much as 100 grams. Pyrolysis lasted in room temperature in 2 hours after the pyrolysis temperature was reached, i.e. 450oC. The formed smoke was condensed and weighed every 10 minutes from the first droplet until the pyrolysis time was completed. The remaining solids in the reactor were taken after the pyrolysis was completed and reactor temperature reached room temperature. The aluminum mixture was subsequently melted, molded and cooled. Experiments were repeated in various pyrolysis temperature variations (500°C, 550°C, 600°C and 650°C). The results show that the increase of pyrolysis temperature will decrease the yield of solids, while the aluminum yield remains. The obtained aluminum metal is 5.3% against the initial plastic mass in purity of 95.80%. The kinetic model representing plastic pyrolysis process is a single reaction model with the value of kinetic parameters of pre-exponential factor (A) 18.2689 min-1 and the activation energy value (E) 40.2310 kJ/mole.   Keywords: aluminum, pyrolysis, plastic wastes, temperature, kinetic parameter
PYROLYSIS OF CASSAVA BAGASSE INTO BIO-OIL USING Ni/NZA CATALYSTS Jefriadi Jefriadi; Syaiful Bahri; Sunarno Sunarno; Rinny Jelita
Konversi Vol 8, No 2 (2019): Oktober 2019
Publisher : Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/k.v8i2.7194

Abstract

Cassava bagasse is a solid tapioca industry waste that can be used as an energy source. In this study, cassava bagasse was pyrolyzed to produce bio-oil and studied the effect of Ni/NZA catalysts on yield, heating value and distribution of bio-oil products. The making of Ni/NZA catalyst starts with the process of activating natural zeolite to produce natural zeolite activated (NZA). Furthermore, impregnation of Ni metals in NZA with Ni levels 1, 2 and 3% w/w (Ni/NZA). The next step is calcination, oxidation and reduction. Cassava is peeled, shredded, washed, filtered and dried and then mashed and screened with a 60 and 80 mesh sieve to obtain cassava bagasse biomass with a size of -60+80 mesh. 50 grams of cassava bagasse with 500 ml silinap and 1.5 gram Ni/NZA catalyst are pyrolyzed at 320oC with nitrogen gas flow of 80 mL/min. Bio-oil products are analyzed by the heating value and distribution of the products. The yield of bio-oil obtained on pyrolysis using 0% Ni/NZA was 54.27% and pyrolysis using 2% Ni/NZA obtained the highest yield of 61.87%. The highest bio-oil heating value was obtained in pyrolysis using 0% Ni/NZA which is 46.78 MJ/kg and lower with increasing Ni levels in NZA. The results of GC-MS analysis of the bio-oil products showed that the use of 1% Ni/NZA catalyst significantly increased the percent area of several components i.e. 2,4,4-trimethy-l-1-Pentene, 2,5-dimethyl-2,4-Hexadiene, and 2,4,4-trimethyl-2-Pentene and decreases the percent area of some other components i.e. 1-bromo-3-methyl-Cyclohexane, 2-methyl-1-Propene,tetramer, 1-(1,1-dimethylethoxy)-3-methyl-Cyclohexene and 3-(3,3-dimethylbutyl)-Cyclohexanone.
STUDI KINETIKA PIROLISIS SEKAM PADI: PERBANDINGAN MODEL KINETIKA Rinny Jelita; Hesti Wijayanti; Jefriadi Jefriadi
Konversi Vol 7, No 2 (2018): Oktober 2018
Publisher : Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/k.v7i2.6496

Abstract

Abstrak: Peningkatan populasi dunia menuntut penambahan kebutuhan energi yang kian langka sehingga dibutuhkan sumber energi alternatif seperti bio oil. Sekam padi yang berupa limbah dapat diolah menghasilkan bio oil melalui proses pirolisis yang sederhana dan ramah lingkungan. Penelitian ini bertujuan mempelajari reaksi dekomposisi sekam padi pada proses pirolisis dan mendapatkan parameter kinetika yang terlibat dalam reaksi pirolisis sekam padi. Sekam padi dihaluskan dan diayak hingga berukuran 0,25-1 mm, dikeringkan menggunakan oven dengan suhu 80˚C selama 180 menit dan dimasukkan ke dalam reaktor pirolisis sebanyak 500 gram. Proses pirolisis berlangsung sejak suhu kamar hingga 1 jam setelah suhu tercapai, yaitu pada suhu 550oC. Asap yang terbentuk dikondensasikan, ditampung sebagai bio oil dan dicatat setiap 10 menit sejak tetesan pertama keluar hingga waktu pirolisis selesai. Berat bio oil  yang dihasilkan digunakan untuk mensimulasikan perubahan massa sekam padi selama pirolisis berlangsung. Penentuan parameter kinetika dilakukan dengan membandingkan tiga model kinetika. Hasil penelitian menunjukkan bahwa pirolisis sekam padi berlangsung mengikuti mekanisme reaksi orde satu dengan parameter kinetika pre-exponensial faktor (A) 0,0347 s-1 dan energi aktivasi (E) 27,9517 kJ/mol. Parameter kinetika yang menghubungkan harga konstanta laju reaksi dengan suhu mengikuti persamaan Arhenius. Kata kunci: dekomposisi, kinetika, pirolisis, sekam padi 
EFFECT OF TEMPERATURE AND BLENDING RATIO TO PRODUCT DISTRIBUTION OF CO-PYROLYSIS LIGNITE AND PALM KERNEL SHELL Rinny Jelita; Jefriadi Jefriadi; Muhammad Jauhar Mahdi; Muhammad Hafiz
Konversi Vol 10, No 2 (2021): Oktober 2021
Publisher : Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/k.v10i2.11686

Abstract

The issue of the energy crisis and environmental problems due to waste encourage the formation of new fuels from renewable materials such as palm kernel shell biomass (CKS). In other hand, low rank coal (lignite) has low economic value, so it needs to be improved to be used widely. Utilization of lignite and CKS can produce solid products (char) in the form of hybrid coal through the co-pyrolysis process. This study aims to determine the optimum temperature and composition of co-pyrolysis lignite and CKS based on the distribution of the resulting product. The lignite is dried and pulverized to a particle size of 20-50 mesh. CKS cleaned, cut into pieces and sieved to a size of 0.4-2 mm. Then the CKS was dried in an oven at 105oC for 24 hours. Lignite and CKS were mixed with a composition of 15%, 22.5%, and 30% by weight of CKS:lignite. The mixture of materials is put into the co-pyrolysis reactor as much as 200 grams. The co-pyrolysis process was carried out at temperatures of 200ºC, 300ºC, and 400ºC for 1 hour by flowing nitrogen gas into the reactor with a flow rate of 1.5 L/min. The results showed that increasing the mixing ratio of CKS:lignite and co-pyrolysis temperature would increase tar yield while decreasing char yield. Judging from the highest tar yield, the optimum co-pyrolysis temperature was 400oC at 15% optimum mixing ratio, while 200oC and 22.5% were optimum co-pyrolysis temperatures and mixing ratio to obtain the largest char yield. Both tar and char co-pyrolysis products can be an alternative energy source with further processing.
Rice Husk Demineralization: Effect of Washing Solution on Its Physicochemical Structure and Thermal Degradation Hesti Wijayanti; Iryanti Fatyasari Nata; Chairul Irawan; Rinny Jelita
Jurnal Kimia Sains dan Aplikasi Vol 24, No 2 (2021): Volume 24 Issue 2 Year 2021
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2585.422 KB) | DOI: 10.14710/jksa.24.2.37-42

Abstract

Generally, biomass consists of various amounts of minerals. These minerals influence the biomass characteristics and behavior during their use in a thermochemical process such as pyrolysis. The conversion during pyrolysis and its final product will be affected. This research was carried out to study the impact of washing treatment in water and acid solutions on the rice husk as the raw material for pyrolysis. Also, the effect of acid strength (citric acid as the weak acid while nitric acid as the strong acid) and its concentration (1, 5, and 10 wt.%) was investigated. The results confirmed from the thermogravimetry (TGA/DTG) analysis, surface analysis (SEM), and spectra (FTIR) analysis describe the treatment using water caused less change on the rice husk surface structure and its thermal degradation. However, it seems hard to reduce the minerals (proved from XRF analysis). Meanwhile, the treatment using acids solution resulted in lower mineral composition than the rice husk without treatment. This result is more visible for demineralization using a 5 wt.% nitric acid solution. However, for a higher concentration (washing treatment using 10 wt.% solutions of nitric acid), the degradation on rice husk structure was more occurred.
Potential Alternative Energy of Hybrid Coal from Co-pyrolysis of Lignite with Palm Empty Fruit Bunch and the Kinetic Study Rinny Jelita; Iryanti Fatyasari Nata; Chairul Irawan; J. Jefriadi; Meda Nur Anisa; Muhammad Jauhar Mahdi; Meilana Dharma Putra
Indonesian Journal of Science and Technology Vol 8, No 1 (2023): IJOST: April 2023
Publisher : Universitas Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17509/ijost.v8i1.53149

Abstract

Lignite is classified as a low-rank coal due to its low content of calories. Co-pyrolysis with biomass waste such as palm empty fruit bunches (EFB) here can be used to increase lignite’s economic value. The mixture of these two materials can produce an alternative energy source called hybrid coal (HC). This study aims to determine the optimum temperature for co-pyrolysis of lignite and EFB as well as characterize liquid (tar) and solid product (HC). Its kinetic study was evaluated as well. A raw material of 200 grams with a composition of 22.5% (w/w) EFB to lignite was put into a reactor to react at a temperature range of 300-450oC for 1 hour. To form hybrid coal briquettes (HCB),tapioca adhesive with a concentration of 6% (w/w) was added to the solid product (HC). The results showed that the tar yield increased with increasing temperature from 300 to 450oC. Similarly, the calorific value of HC increased by 14.50% as also occurred in other physical properties of HC. Meanwhile, the kinetic study revealed that the model was well-fitted to the data, and confirmed the obtained results. Thus, this research can support the development of affordable alternative energy to be implemented in large-scale production.
Characteristics of Hybrid Coal from Co-Pyrolysis of Lignite and Corn Cob Jefriadi Jefriadi; Mita Oktaviani; Lydia Rahmi; Rinny Jelita
Jurnal Bahan Alam Terbarukan Vol 12, No 1 (2023): June 2023 [Nationally Accredited - Sinta 2]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v12i1.39789

Abstract

Lignite is the lowest rank coal which has less economic value. Corn cobs are solid waste biomass as a by-product of corn processing. The processing of these two materials can produce a product in the form of hybrid coal through the co-pyrolysis process. This study aims to determine the optimum temperature and mixing ratio of co-pyrolysis of lignite and corn cob and to characterize the hybrid coal produced by co-pyrolysis. The lignite is dried and crushed to a particle size of 20-50 mesh. Corn cob was cleaned, cut into pieces, and sieved to a size of 0.4-2 mm. Then it was dried using an oven at 105oC for 24 hours. Lignite and corn cob were mixed with a ratio of 3:1, 1:1, and 1:3 (mass of lignite: mass of corn cob). The mixture of materials is inserted into the pyrolysis reactor as much as 400 grams. The pyrolysis process was carried out at temperatures of 350ºC, 400ºC, 450ºC, 500ºC, and 550ºC for 1 hour by flowing nitrogen gas into the reactor with a flow rate of 1.5 L/minute. The results showed that increasing the mixing ratio and co-pyrolysis temperature would decrease the yield of hybrid coal. Increasing the pyrolysis temperature will increase the calorific value of hybrid coal. Still, the effect of the mixing ratio of lignite and corn cob shows a decrease in heating value at a mixing ratio of 1:1 and an increase in a mixing ratio of 1:3. Other parameters such as moisture content and volatile matter content decreased with increasing temperature and mixing ratio. In contrast, ash content and fixed carbon content increased. So, an optimum temperature and mixing ratio of 450ºC and 1:3 is the best condition to get hybrid coal that met the requirements to be a solid fuel.