Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : BERITA BIOLOGI

ANALISIS KARBOKSIMETIL SELULOSA DARI BAKTERI Acetobacter xylinum DAN Acetobacter sp. RMG-2 [Analysis of Carboxymethyl Cellulose from Acetobacter xylinum and Acetobacter sp. RMG-2 Bacteria] Melliawati, Ruth; Djohan, Apridah Cameliawati
BERITA BIOLOGI Vol 12, No 3 (2013)
Publisher : Research Center for Biology-Indonesian Institute of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/beritabiologi.v12i3.642

Abstract

Bacterial cellulose has long been manufactured and used for industrial purposes and health. Bacterial cellulose more profitable than the cellulose plants because during the manufacturing process, they do not harm the environment. The purpose of this study was to identify differences of cellulose produced by Acetobacter xylinum and Acetobacter sp. RMG-2 from that produced by plants. The study was also aimed to determine superiority of carboxymethyl cellulose (CMC) produced by those bacteria. The medium HB was prepared for the production of cellulose from both bacteria. Bacterial cellulose preparation was carried out to obtain solid fine powder, followed by manufacturing carboxymethyl cellulose through several stages to obtain CMC powder. CMC analysis was performed for both bacteria and plants targeted on the surface structure of cellulose, the density of solids, viscosity CMC and functional groups. As a result, the surface fiber cellulose plants had a wider space than fiber cellulose bacterium. The density of solids of CMC A. xylinum, A. sp. RMG-2 and plant were 30.9998 g/cm3, 0.0079 g/cm3 and 0.9978 g/cm3 respectively. Viscosity of the CMC were of 5.78 cP, 5.25 cP and 5.91 cP for each A. xylinum,A. sp. RMG-2 and plant. CMC functional groups of bacteria has met the parameters of success as indicated by the infrared spectrum since it formed a methyl group, carboxyl group and the group of sugar. Cellulose Acetobacter sp. RMG-2 and A. xylinum cellulose can replace plants through the process of compound alkalization with sodium hydroxide, because the compound can lower the level of density of pores of cellulose fibers. The CMC resulting from bacterial cellulose as good as CMC plant and had characteristics resembling CMC plant.
MIKROBA ENDOFIT DARI TANAMAN SRIKAYA (Annona squamosa L.) SEBAGAI PENGHASIL ANTIMIKROBA Staphylococcus aureus DAN Candida albicans [Antimicrobial activity of endophytic microbes from sugar-apple (Annona squamosa l.) plant againts Staphylococcus aureus and Candida albicans] Melliawati, Ruth; Sunifah, Sunifah
BERITA BIOLOGI Vol 16, No 1 (2017)
Publisher : Research Center for Biology-Indonesian Institute of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2608.787 KB) | DOI: 10.14203/beritabiologi.v16i1.2273

Abstract

Various studies indicated that endophytic microbes lived in the plant tissues and produced antimicrobial compounds. Sugar-apple plant  (Annona squamosa L) contained alkaloids, cyanogenic glycosides, and flavonoids. The purpose of this reasearch were (1) to determine the endophytic microbes isolated from sugar-apple plant (2) to study inhibiting capabillity of endophytic isolate against Staphylococcus aureus and Candida albicans, (3) to analyze antimicrobial compounds produced by the potential endophytic isolate. Diffusion agar plate methode was used to assessed antimicrobial activity. Antimicrobial compounds were analyzed by Thin Layer Chormatography (TLC) and High Performance Liquid Chormatography (HPLC), compared with erythromycin, metronidazole and tetracycline. Twelve bacterial isolates and 24 fungus were isolated. Selected bacteria, BMC 1.1, showed the biggest clear zone on C. albicans culture on agar medium, meanwhile selected fungi, BTCK 1.1T, formed the biggest colony on S. aureus culture on agar medium. TLC and HPLC analysis showed that the Rf value of BMC 1.1 and BTCK 1.1T chloroform phase fractions was similiar to metronidazole. Metronidazole concentration in C1, C2, Ck1 and Ck2 fraction were 170.98 ppm, 18.27 ppm, 1.51 ppm and 4.14 ppm respectively.