Mohammad Andri Budiman
Jurusan Ilmu Komputer Fakultas Ilmu Komputer Dan Teknologi Informasi, USU

Published : 11 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Jurnal Sistem Komputer dan Informatika (JSON)

Segmentasi Nasabah Bank Pada Data Campuran Menggunakan K-Means Clustering W, Joceline Schellenberg; Budiman, Mohammad Andri; Amalia, Amalia
Jurnal Sistem Komputer dan Informatika (JSON) Vol 6, No 3 (2025): Maret 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v6i3.8532

Abstract

In order to increase the extension of the use of Local Government Banks’s services, customer segmentation is crucial for banks to develop marketing strategies tailored to specific customer groups. While the RFM model is commonly used, enhancing service usage expansion requires data on customer transaction preferences, which are typically categorical in nature. Therefore, this study segments bank customers based on their transaction history, utilizing not only numerical data but also categorical data representing transaction preferences using K-Means Clustering. The clustering model effectively groups customers into four clusters with distinct characteristics