Claim Missing Document
Check
Articles

Found 2 Documents
Search

PENGEMBANGAN SISTEM INFORMASI ABSENSI KARYAWAN MENGGUNAKAN BARCODE PADA PT PRIMAYUDHA MANDIRIJAYA Agung Tri Utomo; Suprihadi Suprihadi
JATISI (Jurnal Teknik Informatika dan Sistem Informasi) Vol 8 No 2 (2021): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)
Publisher : Lembaga Penelitian dan Pengabdian pada Masyarakat (LPPM) STMIK Global Informatika MDP

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35957/jatisi.v8i2.876

Abstract

PT Primayudha Mandirijaya is one of the companies engaged in spinning cotton into yarn, the company has quite a lot of employees, in this case the need for proper attendance management, fast and accurate, this study discusses the design of a web attendance system using barcodes because in this case there is still attendance which is done manually will certainly be a hassle in filing employee data. The system is created using the PHP programming language using the MySQL database as a place to store employee data. The vue js framework is also used to enhance the appearance of the attendance system. barcode is one of the technology users that can make it easier to use. The system has been tested using UAT by obtaining 71.3% with a statement agreeing. Keywords— Barcode, Attendance, Vue js, Web, SDLC.
Analisis Ridge Robust Penduga Generalized M (GM) Pada Pemodelan Kalibrasi Untuk Kadar Gula Darah Agung Tri Utomo; Erfiani, Erfiani; Fitrianto, Anwar
VARIANSI: Journal of Statistics and Its application on Teaching and Research Vol. 4 No. 2 (2022)
Publisher : Program Studi Statistika Fakultas MIPA UNM

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (384.666 KB) | DOI: 10.35580/variansiunm14

Abstract

Calibration modeling is one of the methods used to analyze the relationship between different methods. The relationship is like the relationship between invasive and non-invasive blood sugar measurement. Problems that often arise in calibration modeling are multicollinearity and outliers. Multicollinearity problems can cause the regression confidence interval to widen, so that there is no statistically significant regression coefficient. Outliers cause statistical tests to deviate. The handling of these problems can be solved by robust ridge analysis. Ridge robust is a combined analysis of ridge regression and robust regression. Ridge regression is able to overcome the problem of multicollinearity and robust regression can overcome the problem of outliers. The estimator used is Generalized M (GM). This method will be applied to a calibration model that uses invasive and non-invasive blood sugar level data. The model used with Generalized M (GM) estimator robust regression using modulation clusters 50 to 90 in 2017 is better than the modulation group 50. up to 90 in 2019. The statistical values obtained are SSE of 0.910, RMSEadj of 0.114, and RMSEP of 0.030. Calibration models that have outliers and multicollinearity problems can be overcome by robust ridge regression. The feasibility value of the model obtained in the GM estimator robust regression is smaller than the MM estimator ridge robust regression in the calibration modeling for non-invasive blood sugar level data. That is, the best model that can be used is the robust ridge regression GM estimator.