Claim Missing Document
Check
Articles

Found 5 Documents
Search

EFEKTIVITAS PEMBELAJARAN MATEMATIKA MELALUI PENERAPAN MODEL KOOPERATIF TIPE TEAMS GAMES TOURNAMENTS (TGT) PADA SISWA KELAS VII.5 SMP NEGERI 3 PALLANGGA Evi Novianty
CENDEKIA: JURNAL ILMIAH PENDIDIKAN Vol 9 No 2 (2021): CENDEKIA: Jurnal Ilmiah Pendidikan
Publisher : STKIP Paris Barantai

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (255.608 KB) | DOI: 10.33659/cip.v9i2.209

Abstract

This study is an experimental study that aims to determine the effectiveness cooperative learning model type of the Teams Games Tournament (TGT) in learning mathematics in class VII.5 students of SMP Negeri 3 Pallangga, Gowa Regency. The research design used was a one group pretest-posttest design and carried out for 6 meetings. Data collection techniques used were learning outcomes tests given to students, student activity observation sheets and teacher's ability to manage learning and student response questionnaires. The results of the descriptive analysis show that: (1) the average score of students' mathematics learning outcomes is 84.90 and is in the high category with a standard deviation of 10.89 where the lowest score obtained is 55 and the highest score is 100.00 from the ideal score of 100; (2) the average frequency of student activities in learning activities has increased; (3) student response questionnaires showed that 82.66% of students gave positive responses to TGT cooperative learning; (4). Based on the results of the study, the cooperative learning model of the Teams Games Tournament (TGT) type is effectively applied in learning mathematics in class VII students of SMP Negeri 3 Pallangga, Gowa Regency. Keywords : Efektivitas, Experimental, dan Teams Games Tournament
Profil Reversibilitas dalam Menyelesaikan Masalah Matematika Ditinjau Dari tipe Kepribadian Siswa Evi Novianty
CENDEKIA: JURNAL ILMIAH PENDIDIKAN Vol 10 No 1 (2022): CENDEKIA: Jurnal Ilmiah Pendidikan
Publisher : STKIP Paris Barantai

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (208.389 KB) | DOI: 10.33659/cip.v10i1.219

Abstract

Penelitian ini bertujuan untuk mengetahui profil reversibilitas siswa SMP Kelas VIII dalam menyelesaikan masalah matematika ditinjau dari tipe kepribadian. Metode yang digunakan dalam penelitian ini adalah penelitian kualitatif deskriptif dengan subjek masing-masing 2 orang tipe kepribadian sanguine, koleris, dan plegmatis. Metode yang digunakan berupa lembar tes tertulis, angket tipe kepribadian, dan pedoman wawancara semi terstruktur. Analisis data menggunakan reduksi data, menyajikan data dan membuat kesimpulan. Hasil penelitian: Tipe kepribadian sanguinis mampu memahami masalah, cenderung tidak tenang, senyum-senyum melihat sekelilingnya, saat mengalami kesulitan langsung memegang kepala dan penuh rasa ingin tahu, seru diajak ngobrol, menunjukkan sikap ragu serta mengalami inversi secara tertulis sebelum menemukan kompensasi. Tipe kepribadian koleris Subjek membuktikan bahwa persamaan yang ia temukan merupakan penyelesaian tunggal dan tidak mengalami inversi secara tertulis,berpikir beberapa menit menatap soal, cenderung menyembunyikan ketidakbolehannya dan ia menunjukkan bahwa ia berhasil. Hanya mengalami kesalahan perhitungan saja sehingga harus mengulang tiap penyelesaiannya, sering mengoreksi kembali saat subjek menyelesaikan masalah. Tipe kepribadian plegmatis Subjek terlihat mengalami proses inversi yang dilakukan secara tertulis maupun tidak tertulis, hanya menatap soal dengan beberapa selang waktu sehingga dapat dikatakan inversi terjadi dalam pikirannya saja dan memberi tindakan yang tenang, memperoleh kompensasi atau hasil yang ekuivalen. Kata Kunci: Reversibilitas, Masalah matematika, Kepribadian
ANALISIS KEMAMPUAN PENALARAN MATEMATIS MAHASISWA PADA MATA KULIAH STRUKTUR ALJABAR Masril Aguswandi Tudjuka; Evi Novianty
CENDEKIA: JURNAL ILMIAH PENDIDIKAN Vol 10 No 2 (2022): CENDEKIA: Jurnal Ilmiah Pendidikan
Publisher : STKIP Paris Barantai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33659/cip.v10i2.235

Abstract

The course algebraic structure is one of the compulsory subjects in the mathematics Education Study Program. One of the topics discussed in the structure course is group theory. The group theory is one the course algebraic structure that introduces the concept of modern algebra. In studying, the students are required to have the ability to think logically and reason systematically because the course algebraic structure is full of definitions and theorems. This study aimed to describe the ability of students’ mathematical reasoning in solving group problems. The method used in this study is a qualitative approach. This research has been carried out in the Mathematics Education of Study Program at the STKIP Paris Barantai, March 2022. The results show that high-ability of students are declared capable of reasoning on all indicators of mathematical reasoning ability, namely analyze, generalize, synthesize and justify; students with moderate abilities are stated to be able to reason on the analyze and generalize indicators, while the students that low abilities are only able to reason on the analyze indicators. Key words: Analysis of reasoning ability; group Struktur Aljabar.
ANALISIS KEMAMPUAN PEMAHAMAN MATEMATIS MAHASISWA STKIP PARIS BARANTAI PADA MATA KULIAH TEORI BILANGAN Evi Novianty
CENDEKIA: JURNAL ILMIAH PENDIDIKAN Vol 11 No 1 (2023): Cendekia: Jurnal Ilmiah Pendidikan
Publisher : STKIP Paris Barantai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33659/cip.v11i1.273

Abstract

Kurangnya pemahaman mahasiswa terhadap konsep-konsep yang diberikan serta mahasisa masih mengalami kesulitan dalam mengidentifikasi apa yang diketahui dan apa yang akan dibuktikan. Penelitian ini bertujuan untuk menganalisis kemampuan pemahaman matematis mahasiswa dalam matakuliah teori bilangan. Penelitian ini menggunakan metode penelitian kulitatif bersifat desktriptif. Subjek penelitian yang digunakan berjumlah 30 responden. Teknik pengumpulan data menggunakan studi kepustakaaan, dokumentasi, dan wawancara. Hasil penelitian kemampuan pemahaman matematis dari dua indikator penelitian yaitu kemampuan pemahaman konseptual dan kemampuan pemahaman fungsional, sebagian besar mahasiswa masih mengalami kesulitan dalam menyelesaikan soal pemahaman. Sebanyak 77% dari sampel penelitian belum paham cara menyelesaikan soal. Berdasarkan data tersebut maka dapat disimpulkan bahwa mahasiswa belum dapat mengoptimalkan seluruh kemampuan terutama kemampuan pemahaman matematisnya dalam mengerjakan soal teori bilangan sehingga cenderung menyerah dalam mengerjakan soal ketika mengalami kesulitan. Sebanyak 23% sampel sudah mengerti cara menyelesaikan namun masih beberapa yang kurang tepat dalam langkah penyelesaiannya. Hal ini disebabkan oleh beberapa faktor, salah satunya adalah lemahnya pemahaman dalam membedakan bilangan rasional dengan irasional beserta definisi dan sifat-sifatnya (materi prasyarat). Kata Kunci: Analisi, Kemampuan Pemahaman Matematis, Teori Bilangan.
DESKRIPSI PEMECAHAN MASALAH MATEMATIKA DITINJAU DARI TINGKAT KECERDASAN LOGIS MATEMATIS Muhammad Yali; Muhammad Ali; Evi Novianty
CENDEKIA: JURNAL ILMIAH PENDIDIKAN Vol 11 No 2 (2023): CENDEKIA: Jurnal Ilmiah Pendidikan
Publisher : STKIP Paris Barantai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33659/cip.v11i2.290

Abstract

The study alms to find out Mathematical Problem Solving in terms of the level of Mathematical Logical Intelligence of class VIII C students of SMP Negeri 1 Kotabaru. The type of research used was descriptive qualitative research. The subjects of the research were 2 students with a high level of logical-mathematical intelligence, 2 students in the medium category, and 2 students in the low category in class VIII C SMP Negeri 1 Kotabaru. Data collection techniques in this study were written tests and interviews. Data analysis was carried out starting from triangulation data, data reduction, presentation and then drawing conclusions. The results showed that for solving mathematical problems students with a high level of Mathematical Logical Intelligence were able to solve problems from each step of solving Polya correctly. Students in the moderate category are able to fulfill the three indicators of problem solving based on Polya's steps, even though they are not optimal. Students in the low category only fulfill two problem solving indicators based on Polya's steps. Keywords: Problem Solving, Mathematical Problems, Mathematical Problem Solving, Mathematical Logical Intelligence.