Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Bulletin of Chemical Reaction Engineering

Kinetic Modeling of Flocculation and Coalescence in the System Emulsion of Water-Xylene-Terbutyl Oleyl Glycosides Harsa Pawignya; Tutuk Djoko Kusworo; Bambang Pramudono
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (577.775 KB) | DOI: 10.9767/bcrec.14.1.2594.60-68

Abstract

The development of a mathematical model for explaining the kinetics of flocculation and coalescence of emulsion droplets is essential to study the stability of an emulsion system of the kinetics of emulsion stability. Mathematic models was developed from the equation Van Den Tempel by modifying emulsion systems. The emulsion was made by mixing water-xylene and surfactant tert-butyl oleyl glycosides. This research studied the effect of stirrer speed on the value of flocculation rate constant (a) and coalescence rate constant (K). The model identified the emulsion development condition whether controlled by coalescence or flocculation. It was observed that under lower agitation speed (1000 rpm) the emulsion development was controlled by flocculation mechanism, while a faster agitation (2000 rpm or higher) exhibited coalescence controlled mechanism. The results confirmed that the 1st model was the most appropriate for water-xylene-TBOG emulsion system. From four models after fitting with experimental data, the most suitable model is 4th model, because it has the smallest error of 2.22 %. 
Microwave Irradiation-Assisted Chitosan Hydrolysis Using Cellulase Enzyme Nur Rokhati; Bambang Pramudono; Titik Istirokhatun; Heru Susanto
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (493.463 KB) | DOI: 10.9767/bcrec.13.3.2378.466-474

Abstract

The influence of microwave irradiation on the chitosan hydrolysis catalyzed by cellulase enzyme was studied. The hydrolyzed chitosan was characterized by measuring its viscosity and reducing sugar. Further, it was also characterized by Fourier-Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), and Scanning Electron Microscope (SEM). The classical Michaelis-Menten kinetic parameters were measured by analyzing the amount of reducing sugars. The results were compared with the hydrolysis by using conventional shaker incubator. The hydrolysis reaction time needed to obtain similar reducing sugar yield was significantly lower for microwave irradiation than shaker incubator. On the other hand, the reduction rate of the relative viscosity was significantly higher for the hydrolysis of chitosan using shaker incubator. A significant difference in chemical structure was observed between hydrolysis using microwave irradiation and shaker incubator. Overall, the result showed that the hydrolysis behavior of chitosan using microwave irradiation is significantly different with using shaker incubator.