Claim Missing Document
Check
Articles

Found 10 Documents
Search

METODE DUAL KANAL UNTUK ESTIMASI KEDALAMAN DI PERAIRAN DANGKAL MENGGUNAKAN DATA SPOT 6 STUDI KASUS : TELUK LAMPUNG (DUAL BAND METHOD FOR BATHYMETRY ESTIMATION IN SHALLOW WATERS DEPTH USING SPOT 6 DATA CASE STUDY: LAMPUNG BAY) Muchlisin Arief; Syifa Wismayati Adawiah; Ety Parwati; Sartono Marpaung
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 14 No. 1 Juni 2017
Publisher : Indonesian National Institute of Aeronautics and Space (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1004.554 KB) | DOI: 10.30536/j.pjpdcd.2017.v14.a2618

Abstract

Depth data can be used to produce seabed profile, oceanography, biology, and sea level rise. Remote sensing technology can be used to estimate the depth of shallow marine waters characterized by the ability of light to penetrate water bodies. One image that can estimate the depth is SPOT 6 which has three visible canals and one NIR channel with 6 meter spatial resolution. This study used SPOT 6 image on March 22, 2015. The image was first being  dark pixel atmospheric corrected by making 30 polygons. The originality of this method was to build a correlation between the dark pixel value of red and green channels with the depth of the field measurement results, made on June 3 to 9, 2015. The algorithm  derived experimentally consisted of: thresholding which served to separate the land by the sea and the correlation function. The correlation function was obtained: first correlating the observation value with each band, then calculating the difference of minimum pixel darkness value and minimum for red and green channel was 0.056 and 0.0692. The model was then constructed by using the comparison proportions, so that the linear equations were obtained in two channels: Z (X1, X2) = 406.26 X1 + 327.21 X2 - 28.48. Depth estimation results were for a 5-meter scale, the most efficient estimation with the smallest error relative mean occured in shallow water depth from 20 to 25 meters, while the result of   10 meters scale from 20 to 30 meters and the estimated depth hadsimilar patterns or could be said close to reality. This method was able to detect sea depths up to 25 meters and had a small RMS error of 0.653246 meters. Thus the two-channel method coukd offer a fast, flexible, efficient, and economical solution to map topography of the ocean floor.AbstrakData kedalaman dapat digunakan untuk menghasilkan profil dasar laut, oseanografi, biologi, dan kenaikan muka air laut. Teknologi penginderaan jauh dapat digunakan untuk mengestimasi kedalaman perairan laut dangkal yang ditandai dengan kemampuan cahaya untuk menembus badan air. Salah satu citra yang mampu mengestimasi kedalaman tersebut adalah SPOT 6 yang memiliki tiga kanal visible dan satu kanal NIR dengan resolusi spasial 6 meter. Pada penelitian ini, Citra SPOT-6 yang digunakan adalah 22 Maret 2015. Citra terlebih dahulu dilakukan koreksi atmosferik dark pixel dengan membuat 30 poligon. Originalitas dari metode ini adalah membangun suatu korelasi antara nilai dark pixel kanal merah dan hijau dengan nilai kedalaman hasil pengukuran lapangan yang dilakukan pada 3 sampai dengan 9 Juni 2015. Algoritma diturunkan secara eksperimen yang terdiri dari thresholding yang berfungsi untuk memisahkan daratan dengan lautan dan fungsi korelasi. Fungsi korelasi diperoleh pertama-tama mengkorelasikan nilai pengamatan dengan masing-masing band, kemudian menghitung selisih nilai dark pixel maksimum dan minimum untuk kanal merah dan hijau yaitu 0,056 dan 0,0692. Selanjutnya, dibangun model dengan menggunakan dalil perbandingan sehingga diperoleh persamaan linier dalam dua kanal yaitu: Z(X1,X2) = 406,26 X1 + 327,21 X2 – 28,48. Hasil estimasi kedalaman, untuk skala 5 meter, estimasi yang paling efisien dengan Mean relatif error terkecil terjadi pada kedalaman perairan dangkal dari 20 sampai dengan 25 meter, sedangkan untuk skala 10 meter dari 20 sampai dengan 30 meter dan juga hasil estimasi kedalaman yang diperoleh mempunyai pola kemiripan atau dapat dikatakan mendekati kenyataan. Metode ini mampu mendeteksi kedalaman laut hingga 25 meter dan mempunyai RMS error yang kecil yaitu 0,653246 meter. Dengan demikian, metode dua kanal ini dapat menawarkan solusi cepat, fleksibel, efisien, dan ekonomis untuk memetakan topografi dasar laut.
DIGITAL IMAGE PROCESSING OF SPOT-4 FOR SHORELINE EXTRACTION IN LAMPUNG BAY . Emiyati; Syarif Budhiman; Ety Parwati
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 1 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1256.751 KB) | DOI: 10.30536/j.ijreses.2014.v11.a2596

Abstract

Shoreline is an imaginary line separating land and seawater. The intensification of land used/land cover at Lampung bay causes shoreline change either abrasions or accretions. The objectives of this study were to compare the shoreline extraction based on the digital image processing of SPOT-4 using ratio band of infrared and green band, Normalized Difference Vegetation Index (NDVI), and (band infrared) methods and to analyze shoreline change at Lampung Bay. Those methods applied on both cloudy free and cloudy SPOT-4 images and the result compared with RBI map as reference. The result showed that the best metod for shoreline axtraction was ratio band due to accuracy high and stable eventhough it applied on cloudy image. The shoreline changes at Lampung Bay along 2008 to 2012 caused by accretions. The total area of accretion at Lampung Bay for fours years were 662 Ha with the rates 165 Ha/year. The high of accretion rate caused by reclamation for urban built up, fishponds and mangrove.
DAMPAK HIDROKARBON AROMATIK TERHADAP EKOSISTEM MANGROVE DI KAWASAN BINALATUNG KOTA TARAKAN KALIMANTAN UTARA (Impact of Aromatic Hydrocarbon on Mangrove Ecosystem in Binalatung Area Tarakan City North Kalimantan) Dori Rachmawani; Fredinan Yulianda; Cecep Kusmana; Mennofatria Boer; Ety Parwati
Jurnal Manusia dan Lingkungan Vol 23, No 3 (2016): September
Publisher : Pusat Studi Lingkungan Hidup Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jml.18801

Abstract

ABSTRAKKontaminan yang disebabkan oleh hidrokarbon aromatik pada lingkungan mangrove menjadi perhatian serius, karena dampak yang ditimbulkan dapat berakibat berkurangnya fungsi sistem ekologi mangrove secara menyeluruh. Penelitian ini bertujuan untuk mengetahui jenis dan dampak hidrokarbon aromatik terhadap ekosistem mangrove. Penelitian dilaksanakan pada bulan Agustus 2014 hingga bulan Februari 2015. Hasil penelitian menunjukkan bahwa senyawa hidrokarbon aromatik terdiri atas; stirena 2,4,6-trimetil, xilena, stirena, fenantrena dan naftalena 2-benzil. Dampak yang ditimbulkan berupa terjadinya kematian massal terhadap mangrove. Alternatif penanganan kandungan hidrokarbon aromatik pada mangrove adalah dengan metode fitoremediasi. ABSTRACTContaminants of aromatic hydrocarbon on mangrove zone has been a concern seriously, due to the impacts will reduce the overall ecological function of mangrove. The study aims to know kinds and impact of aromatic hydrocarbons of mangrove ecosystem. The study was conducted from August 2014 to February 2015.The results showed that aromatic hydrocarbon compounds consist of; styrene 2,4,6-trimethyl, xylene, styrene, phenantrena dan naftalena 2-benzyl. The impact is dieback of mangrove. Alternative handling aromatic hydrocarbons of mangroves is phytoremediation method.
INTERSEASONAL VARIABILITY IN THE ANALYSIS OF TOTAL SUSPENDED SOLIDS(TSS) IN SURABAYA COASTAL WATERS USING LANDSAT-8 SATELLITE DATA Bela Karbela; Pingkan Mayestika Afgatiani; Ety Parwati
International Journal of Remote Sensing and Earth Sciences Vol. 17 No. 2 (2020)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2020.v17.a3418

Abstract

The spatial and temporal capabilities of remote sensing data are very effective for monitoring the value of total suspended solids(TSS) in water using optical sensors. In this study,TSS observations were conductedin the westseason, transition season 1, east season, and transition season 2 in 2018 and 2019. Landsat 8 image data wereused,extracted into TSS values using a semi-analytic model developed in the Mahakam Delta, East Kalimantan, Indonesia. The TSS data obtained were then analysed for distribution patterns in each season. The sample points were randomly scattered throughout the study area. The TSS distribution pattern in the west season showeda high concentration spread over the coastal area to theoff sea, while the pattern in the east season only showeda high concentration inthecoastal areas. Transitional seasons1 and 2 showed different patterns of TSS distribution in 2018 and 2019, with more varied values. The distribution of TSS is strongly influenced by the season. Observation of each cluster resultedin the conclusion thathuman activity and the rainfall rate can affect the concentration of TSS.
STUDY ON POTENTIAL FISHING ZONES (PFZ) INFORMATION BASED ON S-NPP VIIRS AND HIMAWARI-8 SATELLITES DATA Sartono Marpaung; Teguh Prayogo; Ety Parwati; Kuncoro Teguh Setiawan; Orbita Roswintiarti
International Journal of Remote Sensing and Earth Sciences Vol. 15 No. 1 (2018)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2018.v15.a2817

Abstract

Sea surface temperature (SST) data from S-NPP VIIRS satellite has different spatial resolution with SST data from Himawari-8 satellite. In this study comparative analysis of potential fishing zones information from both satellites has been conducted. The analysis was conducted on three project areas (PA 7, PA 13, PA 19) as a representation Indonesian territorial waters. The data used were daily for both satellites with a period  time from August 2016 to December 2016. The method used was Single Image Detection (SIED) to detect thermal fronts. Method of mass center point for determining potential fishing zones coordinate point from result thermal front detection. Furthermore, an analysis of overlapping was done to compare the coordinate point information from both satellites. Based on data analysis that had been done, the result showed that potential fishing zones coordinate points of Himawari-8 satellite was mostly far from potential fishing zones coordinate point of S-NPP VIIRS. The coordinate points whose positionswere close together or nearly same from both satellites was only about 20 %. Differences in potential fishing zones coordinate positions occur due to the effect of different spatial resolutions of both satellite data and the size of the front thermal events that had high variability. The ideal potential fishing zones coordinate points information was probably a combination of the potential fishing zones coordinate points of S-NPP VIIRS and Himawari-8 by making two adjacent coordinate points to be a single coordinate point. Field validation testing was required to prove the accuracy of the coordinate point.
DIGITAL IMAGE PROCESSING OF SPOT-4 FOR SHORELINE EXTRACTION IN LAMPUNG BAY Emiyati; Syarif Budhiman; Ety Parwati
International Journal of Remote Sensing and Earth Sciences Vol. 11 No. 1 (2014)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2014.v11.a2596

Abstract

Shoreline is an imaginary line separating land and seawater. The intensification of land used/land cover at Lampung bay causes shoreline change either abrasions or accretions. The objectives of this study were to compare the shoreline extraction based on the digital image processing of SPOT-4 using ratio band of infrared and green band, Normalized Difference Vegetation Index (NDVI), and (band infrared) methods and to analyze shoreline change at Lampung Bay. Those methods applied on both cloudy free and cloudy SPOT-4 images and the result compared with RBI map as reference. The result showed that the best metod for shoreline axtraction was ratio band due to accuracy high and stable eventhough it applied on cloudy image. The shoreline changes at Lampung Bay along 2008 to 2012 caused by accretions. The total area of accretion at Lampung Bay for fours years were 662 Ha with the rates 165 Ha/year. The high of accretion rate caused by reclamation for urban built up, fishponds and mangrove.
HARMFUL ALGAL BLOOM 2012 EVENT VERIFICATION IN LAMPUNG BAY USING RED TIDE DETECTION ON SPOT 4 IMAGE Emiyati; Ety Parwati; Syarif Budhiman
International Journal of Remote Sensing and Earth Sciences Vol. 14 No. 1 (2017)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2017.v14.a2626

Abstract

In mid-December 2012, harmful algal bloom phenomenon occurred in Lampung Bay. Harmful Algal Bloom (HAB) is blooming of algae in aquatic ecosystems. It has negative impact on living organism, due to its toxic. This study was applied Red Tide (RT) detection algorithm on SPOT 4 images and verified the distribution of HAB 2012 event in Lampung Bay. The HAB event in 2012 in Lampung Bay can be detected by using RT algorithm on SPOT 4 images quantitatively and qualitatively. According to field measurement, the phytoplankton blooming which happen at Lampung Bay in 2012 were Cochlodinium sp. Image analysis showed that Cochlodinium sp has specific pattern of RT with values, digitally, were 13 to 41 and threshold value of red band SPOT 4 image was 57. The total area of RT distribution, which are found in Lampung Bay, was 11,545.3 Ha. Based on the RT classification of RT images and field data measurement, the RT which is caused many fishes died on the western coastal of Lampung Bay spread out from Bandar Lampung City to Batumenyan village. By using confusion matrix, the accuracy of this this method was 74.05 %. This method was expected to be used as early warning system for HAB monitoring in Lampung Bay and perhaps in another coastal region of Indonesia.
THE EFFECT OF THE EXTENT OF CORAL REEF AREA ON UNIFORM BOTTOM REFLECTANCE DETERMINATION FOR WATER COLUMN CORRECTION USING LANDSAT ETM Syarif Budhiman; Ety Parwati; Emiyati
International Journal of Remote Sensing and Earth Sciences Vol. 9 No. 2 (2012)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2012.v9.a1830

Abstract

In one pixel of 30 meter spatial resolution of Landsat ETM multispectral sensor might consist of mixed bottom substrate types. The influence of a mixture of bottom substrate on the Landsat data can be a source of errors and together with the extent of coral reef area might contribute to affect the determination of uniform bottom reflectance. This study aimed to assess the effect of the extent of coral reef area on uniform bottom reflectance determination for water column correction. Lyzenga method was used for water column correction. This study carried out in two case studies using two sites with different size of coral reef ecosystems area i.e., Tidung island, in the Province of Jakarta and Maratua island, in the Province of East Kalimantan. Tidung island was selected to represent small area of coral reef ecosystem, while Maratua island was selected to represent relatively larger area of coral reef ecosystem. The results showed that the extent of coral reef influenced the determination of training sample areas for uniform bottom reflectance using Landsat ETM. The combination of moderate spatial resolution and the small area of coral reef ecosystem lead to the difficulties for uniform bottom substrate type determination at different depths.
TIME SERIES ANALYSIS OF TOTAL SUSPENDED SOLID (TSS) USING LANDSAT DATA IN BERAU COASTAL AREA, INDONESIA Ety Parwati; Anang Dwi Purwanto
International Journal of Remote Sensing and Earth Sciences Vol. 14 No. 1 (2017)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2017.v14.a2676

Abstract

Water quality information is usually used for the first examination of the pollution.  One of the parameters of water quality is Total Suspended Solid (TSS), which describes the amount of matter of particles suspended in the water. TSS information is also used as initial information about waters condition of a region. TSS could be derive from Landsat data with several combinations of spectral channels to evaluate the condition of the observation area for both the waters and the surrounding land. The study aimed to evaluate Berau waters condition in Kalimantan, Indonesia, by utilizing TSS dynamics extracted from Landsat data. Validated TSS extraction algorithm was obtained by choosing the best correlation between  field data and image data. Sixty pairs of points had been used to build validated TSS algorithms for the Berau Coastal area. The algorithm was TSS = 3.3238 * exp (34 099 * Red Band Reflectance). The data used for this study were Landsat 5 TM, Landsat 7 ETM and Landsat 8 data acquisition in 1994, 1996, 1998, 2002, 2004, 2006, 2008 and 2013. For detailed evaluation, 20 regions were created along the watershed up to the coast. The results showed the fluctuation of TSS values in each selected region. TSS value increased if there was a change of any kind of land cover/land used into bareland, ponds, settlements or shrubs. Conversely, TSS value decreased if there was a wide increase of mangrove area or its position was very closed to the ocean.
THE RELATIONSHIP BETWEEN TOTAL SUSPENDED SOLID (TSS) AND CORAL REEF GROWTH (CASE STUDY OF DERAWAN ISLAND, DELTA BERAU WATERS) Ety Parwati; Mahdi Kartasasmita; Kadarwan Soewardi; Tridoyo Kusumastanto; I Wayan Nurjaya
International Journal of Remote Sensing and Earth Sciences Vol. 10 No. 2 (2013)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2013.v10.a1849

Abstract

Total suspended solid (TSS) is one of the water quality parameters and limiting factor affecting coral reef growth. In this study, we used the algorithm of TSS= 3.3238*e(34.099* Green band) (where green band is reflectance band 2) to extract TSS from Landsat satellite data. The algorithm was validated with field data. Water column correction method developed by Lyzenga was used to map coral reef. The result showed that the coral reef area in Berau waters decreased significantly (about 12,805 ha or around 36 % ) from the year of 1979 to 2002. The most coral reef reduced area was detected around Derawan Island (about 5,685 ha). Further, some areas changed into sand dune. TSS concentration around Delta Berau and Derawan Island increased aproximately twice from 15- 35 mg/l in 1979 to 20-65 mg/l in 2002. The increase of TSS concentration was followed by the decrease of coral reef area.