Kuncoro Teguh Setiawan
Unknown Affiliation

Published : 15 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 15 Documents
Search

THE EFFECT OF DIFFERENT ATMOSPHERIC CORRECTIONS ON BATHYMETRY EXTRACTION USING LANDSAT 8 SATELLITE IMAGERY Kuncoro Teguh Setiawan; Yennie Marini; Johannes Manalu; Syarif Budhiman
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 12, No 1 (2015)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1113.457 KB) | DOI: 10.30536/j.ijreses.2015.v12.a2668

Abstract

Remote sensing technology can be used to obtain information bathymetry. Bathymetric information plays an important role for fisheries, hydrographic and navigation safety. Bathymetric information derived from remote sensing data is highly dependent on the quality of satellite data use and processing. One of the processing to be done is the atmospheric correction process. The data used in this study is Landsat 8 image obtained on June 19, 2013. The purpose of this study was to determine the effect of different atmospheric correction on bathymetric information extraction from Landsat satellite image data 8. The atmospheric correction methods applied were the minimum radiant, Dark Pixels and ATCOR. Bathymetry extraction result of Landsat 8 uses a third method of atmospheric correction is difficult to distinguish which one is best. The calculation of the difference extraction results was determined from regression models and correlation coefficient value calculation error is generated.
UTILIZATION OF SAR AND EARTH GRAVITY DATA FOR SUB BITUMINOUS COAL DETECTION Atriyon Julzarika; Kuncoro Teguh Setiawan
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 2 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1297.886 KB) | DOI: 10.30536/j.ijreses.2014.v11.a2612

Abstract

Remote sensing data can be used for geological and mining applications, such as coal detection. Coal consists of five classes of Anthracite, Bituminous, Sub-Bituminous, Lignite coal and Peat coal. In this study, the type of coal that is discussed is Sub bituminous, Lignite coal, and peat coal. This study aims to detect potential sub bituminous using Synthetic Aperture Radar (SAR) data, and earth gravity. One type of remote sensing data to detect potential sub bituminous, lignite coal and peat coal are SAR data and satellite data Geodesy. SAR data used in this study is ALOS PALSAR. SAR data is used to predict the boundary between Lignite coal with Peat coal. The method used is backscattering. In addition to the SAR data is also used to make height model. The method used is interferometry. Geodetic satellite data is used to extract the value of the earth gravity and geodynamics. The method used is physical geodesy. Potential sub-bituminous coal can be known after the correlation between the predicted limits lignite coal-peat coal by the earth gravity, geodynamics, and height model. Volume predictions of potential sub bituminous can be known by calculating the volume using height model and transverse profile test. The results of this study useful for preliminary survey of geological in mining exploration activities.
APPLICATION OF VAN HENGEL AND SPITZER ALGORITHM FOR INFORMATION ON BATHYMETRY EXTRACTION USING LANDSAT DATA Kuncoro Teguh Setiawan; Syifa Wismayati Adawiah; Takahiro OSAWA; I. Wayan Nuarsa
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 1 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (886.148 KB) | DOI: 10.30536/j.ijreses.2014.v11.a2603

Abstract

Remote sensing technology provides an opportunity for effective and efficient bathymetry mapping, especially in areas which level of depth changes quickly. Bathymetry information is very useful for hydrographic and shipping safety. Landsat medium resolution satellite imagery can be used for the extraction of bathymetry information. This study aims to extract information from the Landsat bathymetry by using Van Hengel and Spitzer rotation algorithm transformation (1991) in the water of Menjangan Island, Bali. This study shows that Van Hengel and Spitzer rotation algorithm transformation (1991) can be used to extract information on the bathymetry of Menjangan Island. Extraction of bathymetric information generated from Landsat TM imagery data in March 19, 1997 had shown the depth interval of (-0.6) m to (-12.3) m and R2 value of 0.671. While Data LANDSAT ETM + dated June 23, 2000 resulted in depth interval of 0 m to (-19.1) m and R2 value of 0.796. Furthermore, data LANDSAT ETM + dated March 12, 2003 resulted in depth interval of 0 m to (-22.5) m and R2 value of 0.931.
STUDY ON POTENTIAL FISHING ZONES (PFZ) INFORMATION BASED ON S-NPP VIIRS AND HIMAWARI-8 SATELLITES DATA Sartono Marpaung; Teguh Prayogo; Kuncoro Teguh Setiawan; Orbita Roswintiarti
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 15, No 1 (2018)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1341.416 KB) | DOI: 10.30536/j.ijreses.2018.v15.a2817

Abstract

Sea surface temperature (SST) data from S-NPP VIIRS satellite has different spatial resolution with SST data from Himawari-8 satellite. In this study comparative analysis of potential fishing zones information from both satellites has been conducted. The analysis was conducted on three project areas (PA 7, PA 13, PA 19) as a representation Indonesian territorial waters. The data used were daily  for both satellites with a period  time from August 2016 to December 2016. The method used was Single Image Detection (SIED) to detect thermal fronts. Method of mass center point for determining potential fishing zones coordinate point from result thermal front detection. Furthermore, an analysis of overlapping was done to compare the coordinate point information from both satellites. Based on data analysis that had been done, the result showed that potential fishing zones coordinate points of Himawari-8 satellite was mostly far from potential fishing zones coordinate point of S-NPP VIIRS. The coordinate points whose positionswere close together or nearly same from both satellites was only about 20 %. Differences in potential fishing zones coordinate positions occur due to the effect of different spatial resolutions of both satellite data and the size of the front thermal events that had high variability. The ideal potential fishing zones coordinate points information was probably a combination of the potential fishing zones coordinate points of S-NPP VIIRS and Himawari-8 by making two adjacent coordinate points to be a single coordinate point. Field validation testing was required to prove the accuracy of the coordinate point.
ANALYSIS OF THE PENETRATION CAPABILITY OF VISIBLE SPECTRUM WITH AN ATTENUATION COEFFICIENT THROUGH THE APPARENT OPTICAL PROPERTIES APPROACH IN THE DETERMINATION OF A BATHYMETRY ANALYTICAL MODEL Kuncoro Teguh Setiawan; Gathot Winarso; Muhammad Ulin Nuha; Maryani Hartuti; Devica Natalia BR Ginting; Emi Yati; Kholifatul Aziz; Fajar Bahari Kusuma; Wikanti Asriningrum
International Journal of Remote Sensing and Earth Sciences Vol. 18 No. 2 (2021)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2021.v18.a3667

Abstract

The attenuation coefficient (Kd) can be extracted by an apparent optical properties(AOP) approach to determine marine shallow-water habitat bathymetry based on an analytical method. Such a method was employed in the Red Sea by Benny and Dawson in 1983 using Landsat MSS imagery. Therefore, we applied the Benny and Dawson algorithm to extract bathymetry in shallow marine waters off Karimunjawa Island, Jepara, Central Java, Indonesia. We used the SPOT 6 satellite, which has four multispectral bands with a spatial resolution of 6 meters. The results show that three bands of SPOT 6 data (the blue, green, and red bands) can produce bathymetric information up to 30.29, 24.63 and 18.58 meters depth respectively. The determinations of the attenuation coefficients of the three bands are 0.08069, 0.09330, and 0.39641. The overall accuracy of absolute bathymetry of the blue, green, and red bands is 61.12%, 65.73%, and 26.25% respectively, and the kappa coefficients are 0.45, 0.52, and 0.13.
EFFECT OF LOW PASS FILTER ON BATHYMETRIC DETECTION IN PULAU PUTRI SHALLOW SEA, KEPULAUAN SERIBU USING PLANETSCOPE SATELLITE IMAGERY Alberto Junior Hutagaol; Kuncoro Teguh Setiawan; Muhammad Sulaiman Nur Ubay; Hastuadi Harsa
International Journal of Remote Sensing and Earth Sciences Vol. 20 No. 2 (2023)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2023.v20.a3897

Abstract

Sea depth measurements are usually only carried out at locations that can be passed by ships, so measurements in shallow waters are often not possible. Along with the development of remote sensing technology, shallow water bathymetry mapping can now be done using satellite imagery. The Stumpf method is a ratio model that compares two bands in order to reduce the effect of water albedo. The purpose of this research is to study the processing of satellite imagery data for the detection of bathymetry in shallow sea waters, to determine the effect of the low pass filter, and to find out the methods for obtaining detection results with high accuracy. In this study, the primary data used was PlanetScope imagery from the NICFI program. Bathymetry detection of shallow marine waters was carried out around the waters of Putri Island, Seribu Islands Regency. The results of the accuracy test for the detection of shallow sea bathymetry without the application of a low pass filter using the confusion matrix method and the RMSE calculation have higher accuracy with an overall accuracy value of 94.17% and an RMSE value of 1.61
ANALYSIS OF CLASSIFICATION METHODS FOR MAPPING SHALLOW WATER HABITATS USING SPOT-7 SATELLITE IMAGERY IN NUSA LEMBONGAN ISLAND, BALI Kuncoro Teguh Setiawan; Gathot Winarso; Andi Ibrahim; Anang Dwi Purwanto; I Made Parsa
International Journal of Remote Sensing and Earth Sciences Vol. 19 No. 1 (2022)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2022.v19.a3748

Abstract

Shallow water habitat maps are crucial for the sustainable management purposes of marine resources. The use of a better digital classification method can provide shallow water habitat maps with the best accuracy rate that is able to indicate actual conditions. Experts use the object-based classification method as an alternative to the pixel-based method. However, the pixel-based classification method continues to be relied upon by experts in obtaining benthic habitat conditions in shallow water. This study aims to analyze the classification results and examine the accuracy rate of shallow-water habitats distribution using SPOT-7 satellite imagery in Nusa Lembongan Island, Bali. Water column correction by Lyzenga 2006 was opted, while object-based and pixel-based classification was used in this study. The benthic habitat classification scheme uses four classes: substrate, seagrass, macroalgae, and coral. The results show different accuracy is obtained between pixel-based classification with maximum likelihood models and object-based classification with decision tree models. Mapping benthic habitats in Nusa Lembongan, Bali, with object-based classification and decision tree models, has higher accuracy than the other with 68%.
MONITORING CHANGES IN CORAL REEF HABITAT COVER ON BERALAS PASIR ISLAND USING SPOT 4 AND SPOT 7 IMAGERY FROM 2011 AND 2018 Rosaria Damai; Viv Djanat Prasita; Kuncoro Teguh Setiawan
International Journal of Remote Sensing and Earth Sciences Vol. 17 No. 2 (2020)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2020.v17.a3428

Abstract

Beralas Pasir is part of the Regional Marine Conservation Area (KKLD), which was established by the Bintan Regency Government with Bintan Regent Decree No. 261 / VIII / 2007. Water tourism activities undertaken by tourists on the island have had an impact on the condition of the coral reefs, as have other factors, such as bauxite, granite and land sand mining activities around the island. This research aims to determine changes in the coral reef habitat cover and the condition of the coral reefs around Beralas Pasir Island with a remote sensing function, using SPOT 4 imagery acquired on June 1, 2011 and SPOT 7 imagery from April 5, 2020. Data collection of environmental parameters related to the coral reefs was also made. The image processing used the Lyzenga algorithm to simplify the image classification process. The percentage of coral live cover around the island ranges from 26% -53%; this has experienced a significant change, from 67,560 hectares in 2011 to 38,338 hectares in 2018, a total decrease in the area of 29,222 hectares. Some of the natural factors found in the research which have caused damage to the reefs were Drupella snails, the abundance of Caulerpa racemosaalgae, and sea urchins. The majority of the coral reef types consist of Non-Acropora: Coral Massive, Coral, Coral Foliose, Coral Encrusting, Acropora: Acropora Tabulate, Acropora Encrusting, and Acropora Digitate
BATHYMETRIC EXTRACTION USING PLANETSCOPE IMAGERY (CASE STUDY: KEMUJAN ISLAND, CENTRAL JAVA) Asih Sekar Sesama; Kuncoro Teguh Setiawan; Atriyon Julzarika
International Journal of Remote Sensing and Earth Sciences Vol. 17 No. 2 (2020)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2020.v17.a3445

Abstract

Bathymetry refers to the depth of the seabed relative to the lowest water level. Depth information is essential for various studies of marine resource activities, for managing port facilities and facilities, supporting dredging operations, and predicting the flow of sediment from rivers into the sea. Bathymetric mapping using remote sensing offers a more flexible, efficient,and cost-effective method and covers a largearea. This study aims to determine the ability of Planet Scope imagery to estimate and map bathymetry and to as certain its accuracy using the Stumpf algorithm on the in-situ depth data. PlanetScope level 3B satellite imagery and tide-corrected survey dataare employed; satellite images are useful in high-precision bathymetry extraction.The bathymetric extraction method used the Stumpf algorithm. The research location was Kemujan Island, Karimunjawa Islands, Central Java. The selection of this region wasbased on its water characteristics, which have a reasonably high variation in depth. Based on the results of the data processing, it was found that the PlanetScope image data were able to estimate depths of up to 20 m. In the bathymetric results, the R2 accuracy value was 0.6952, the average RMSE value was 2.85 m,and the overall accuracy rate was 71.68%.
BATHYMETRY EXTRACTION FROM SPOT 7 SATELLITE IMAGERY USING RANDOM FOREST METHODS Kuncoro Teguh Setiawan; Nana Suwargana; Devica Natalia BR Ginting; Masita Dwi Mandini Manessa; Nanin Anggraini; Syifa Wismayati Adawiah; Atriyon Julzarika; Surahman; Syamsu Rosid; Agustinus Harsono Supardjo
International Journal of Remote Sensing and Earth Sciences Vol. 16 No. 1 (2019)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2019.v16.a3085

Abstract

The scope of this research is the application of the random forest method to SPOT 7 data to produce bathymetry information for shallow waters in Indonesia. The study aimed to analyze the effect of base objects in shallow marine habitats on estimating bathymetry from SPOT 7 satellite imagery. SPOT 7 satellite imagery of the shallow sea waters of Gili Matra, West Nusa Tenggara Province was used in this research. The estimation of bathymetry was carried out using two in-situ depth-data modifications, in the form of a random forest algorithm used both without and with benthic habitats (coral reefs, seagrass, macroalgae, and substrates). For bathymetry estimation from SPOT 7 data, the first modification (without benthic habitats) resulted in a 90.2% coefficient of determination (R2) and 1.57 RMSE, while the second modification (with benthic habitats) resulted in an 85.3% coefficient of determination (R2) and 2.48 RMSE. This research showed that the first modification achieved slightly better results than the second modification; thus, the benthic habitat did not significantly influence bathymetry estimation from SPOT 7 imagery