Syifa Wismayati Adawiah
Unknown Affiliation

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 7 Documents
Search

METODE DUAL KANAL UNTUK ESTIMASI KEDALAMAN DI PERAIRAN DANGKAL MENGGUNAKAN DATA SPOT 6 STUDI KASUS : TELUK LAMPUNG (DUAL BAND METHOD FOR BATHYMETRY ESTIMATION IN SHALLOW WATERS DEPTH USING SPOT 6 DATA CASE STUDY: LAMPUNG BAY) Muchlisin Arief; Syifa Wismayati Adawiah; Ety Parwati; Sartono Marpaung
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 14 No. 1 Juni 2017
Publisher : Indonesian National Institute of Aeronautics and Space (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1004.554 KB) | DOI: 10.30536/j.pjpdcd.2017.v14.a2618

Abstract

Depth data can be used to produce seabed profile, oceanography, biology, and sea level rise. Remote sensing technology can be used to estimate the depth of shallow marine waters characterized by the ability of light to penetrate water bodies. One image that can estimate the depth is SPOT 6 which has three visible canals and one NIR channel with 6 meter spatial resolution. This study used SPOT 6 image on March 22, 2015. The image was first being  dark pixel atmospheric corrected by making 30 polygons. The originality of this method was to build a correlation between the dark pixel value of red and green channels with the depth of the field measurement results, made on June 3 to 9, 2015. The algorithm  derived experimentally consisted of: thresholding which served to separate the land by the sea and the correlation function. The correlation function was obtained: first correlating the observation value with each band, then calculating the difference of minimum pixel darkness value and minimum for red and green channel was 0.056 and 0.0692. The model was then constructed by using the comparison proportions, so that the linear equations were obtained in two channels: Z (X1, X2) = 406.26 X1 + 327.21 X2 - 28.48. Depth estimation results were for a 5-meter scale, the most efficient estimation with the smallest error relative mean occured in shallow water depth from 20 to 25 meters, while the result of   10 meters scale from 20 to 30 meters and the estimated depth hadsimilar patterns or could be said close to reality. This method was able to detect sea depths up to 25 meters and had a small RMS error of 0.653246 meters. Thus the two-channel method coukd offer a fast, flexible, efficient, and economical solution to map topography of the ocean floor.AbstrakData kedalaman dapat digunakan untuk menghasilkan profil dasar laut, oseanografi, biologi, dan kenaikan muka air laut. Teknologi penginderaan jauh dapat digunakan untuk mengestimasi kedalaman perairan laut dangkal yang ditandai dengan kemampuan cahaya untuk menembus badan air. Salah satu citra yang mampu mengestimasi kedalaman tersebut adalah SPOT 6 yang memiliki tiga kanal visible dan satu kanal NIR dengan resolusi spasial 6 meter. Pada penelitian ini, Citra SPOT-6 yang digunakan adalah 22 Maret 2015. Citra terlebih dahulu dilakukan koreksi atmosferik dark pixel dengan membuat 30 poligon. Originalitas dari metode ini adalah membangun suatu korelasi antara nilai dark pixel kanal merah dan hijau dengan nilai kedalaman hasil pengukuran lapangan yang dilakukan pada 3 sampai dengan 9 Juni 2015. Algoritma diturunkan secara eksperimen yang terdiri dari thresholding yang berfungsi untuk memisahkan daratan dengan lautan dan fungsi korelasi. Fungsi korelasi diperoleh pertama-tama mengkorelasikan nilai pengamatan dengan masing-masing band, kemudian menghitung selisih nilai dark pixel maksimum dan minimum untuk kanal merah dan hijau yaitu 0,056 dan 0,0692. Selanjutnya, dibangun model dengan menggunakan dalil perbandingan sehingga diperoleh persamaan linier dalam dua kanal yaitu: Z(X1,X2) = 406,26 X1 + 327,21 X2 – 28,48. Hasil estimasi kedalaman, untuk skala 5 meter, estimasi yang paling efisien dengan Mean relatif error terkecil terjadi pada kedalaman perairan dangkal dari 20 sampai dengan 25 meter, sedangkan untuk skala 10 meter dari 20 sampai dengan 30 meter dan juga hasil estimasi kedalaman yang diperoleh mempunyai pola kemiripan atau dapat dikatakan mendekati kenyataan. Metode ini mampu mendeteksi kedalaman laut hingga 25 meter dan mempunyai RMS error yang kecil yaitu 0,653246 meter. Dengan demikian, metode dua kanal ini dapat menawarkan solusi cepat, fleksibel, efisien, dan ekonomis untuk memetakan topografi dasar laut.
BATHYMETRY DATA EXTRACTION ANALYSIS USING LANDSAT 8 DATA Kuncoro Teguh Setiawan; Syifa Wismayati Adawiah; Yennie Marini; Gathot Winarso
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 13, No 2 (2016)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (430.643 KB) | DOI: 10.30536/j.ijreses.2016.v13.a2448

Abstract

The remote sensing technique can be used to produce bathymetric map. Bathymetric mapping is important for the coastal zone and watershed management. In the previous study conducted in Menjangan Island of Bali, bathymetric extractin information from the top of the atmosphere (TOA) reflectance image of Landsat ETM+  data has R2 = 0.620. Not optimal  correlation value produced is highly influenced by the reflectance image of Landsat ETM+ data, were used, hence the lack of the research which became the basis of the present study. The study was on the Karang Lebar water of Thousand Islands, Jakarta. And the aim was to determine whether there was an increased correlation coefficient value of bathymetry extraction information generated from Surface reflectance and TOA reflectance imager of Landsat 8 data acquired on August 12, 2014. The method of extraction was done using algorithms Van Hengel and Spitzer (1991). Extraction   absolute depth information obtained from the model logarithm of Landsat 8 surface reflectance images and pictures TOA produce a correlation value of R2 = 0.663 and R2 = 0.712.
BATHYMETRY EXTRACTION FROM SPOT 7 SATELLITE IMAGERY USING RANDOM FOREST METHODS Kuncoro Teguh Setiawan; Nana Suwargana; Devica Natalia Br. Ginting; Masita Dwi Mandini Manessa; Nanin Anggraini; Syifa Wismayati Adawiah; Atriyon Julzarika; Surahman Surahman; Syamsu Rosid; Agustinus Harsono Supardjo
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 16, No 1 (2019)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (819.189 KB) | DOI: 10.30536/j.ijreses.2019.v16.a3085

Abstract

The scope of this research is the application of the random forest method to SPOT 7 data to produce bathymetry information for shallow waters in Indonesia. The study aimed to analyze the effect of base objects in shallow marine habitats on estimating bathymetry from SPOT 7 satellite imagery. SPOT 7 satellite imagery of the shallow sea waters of Gili Matra, West Nusa Tenggara Province was used in this research. The estimation of bathymetry was carried out using two in-situ depth-data modifications, in the form of a random forest algorithm used both without and with benthic habitats (coral reefs, seagrass, macroalgae, and substrates). For bathymetry estimation from SPOT 7 data, the first modification (without benthic habitats) resulted in a 90.2% coefficient of determination (R2) and 1.57 RMSE, while the second modification (with benthic habitats) resulted in an 85.3% coefficient of determination (R2) and 2.48 RMSE. This research showed that the first modification achieved slightly better results than the second modification; thus, the benthic habitat did not significantly influence bathymetry estimation from SPOT 7 imagery.
APPLICATION OF VAN HENGEL AND SPITZER ALGORITHM FOR INFORMATION ON BATHYMETRY EXTRACTION USING LANDSAT DATA Kuncoro Teguh Setiawan; Syifa Wismayati Adawiah; Takahiro OSAWA; I. Wayan Nuarsa
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 11, No 1 (2014)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (886.148 KB) | DOI: 10.30536/j.ijreses.2014.v11.a2603

Abstract

Remote sensing technology provides an opportunity for effective and efficient bathymetry mapping, especially in areas which level of depth changes quickly. Bathymetry information is very useful for hydrographic and shipping safety. Landsat medium resolution satellite imagery can be used for the extraction of bathymetry information. This study aims to extract information from the Landsat bathymetry by using Van Hengel and Spitzer rotation algorithm transformation (1991) in the water of Menjangan Island, Bali. This study shows that Van Hengel and Spitzer rotation algorithm transformation (1991) can be used to extract information on the bathymetry of Menjangan Island. Extraction of bathymetric information generated from Landsat TM imagery data in March 19, 1997 had shown the depth interval of (-0.6) m to (-12.3) m and R2 value of 0.671. While Data LANDSAT ETM + dated June 23, 2000 resulted in depth interval of 0 m to (-19.1) m and R2 value of 0.796. Furthermore, data LANDSAT ETM + dated March 12, 2003 resulted in depth interval of 0 m to (-22.5) m and R2 value of 0.931.
BATHYMETRY EXTRACTION FROM SPOT 7 SATELLITE IMAGERY USING RANDOM FOREST METHODS Kuncoro Teguh Setiawan; Nana Suwargana; Devica Natalia BR Ginting; Masita Dwi Mandini Manessa; Nanin Anggraini; Syifa Wismayati Adawiah; Atriyon Julzarika; Surahman; Syamsu Rosid; Agustinus Harsono Supardjo
International Journal of Remote Sensing and Earth Sciences Vol. 16 No. 1 (2019)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2019.v16.a3085

Abstract

The scope of this research is the application of the random forest method to SPOT 7 data to produce bathymetry information for shallow waters in Indonesia. The study aimed to analyze the effect of base objects in shallow marine habitats on estimating bathymetry from SPOT 7 satellite imagery. SPOT 7 satellite imagery of the shallow sea waters of Gili Matra, West Nusa Tenggara Province was used in this research. The estimation of bathymetry was carried out using two in-situ depth-data modifications, in the form of a random forest algorithm used both without and with benthic habitats (coral reefs, seagrass, macroalgae, and substrates). For bathymetry estimation from SPOT 7 data, the first modification (without benthic habitats) resulted in a 90.2% coefficient of determination (R2) and 1.57 RMSE, while the second modification (with benthic habitats) resulted in an 85.3% coefficient of determination (R2) and 2.48 RMSE. This research showed that the first modification achieved slightly better results than the second modification; thus, the benthic habitat did not significantly influence bathymetry estimation from SPOT 7 imagery
BATHYMETRY DATA EXTRACTION ANALYSIS USING LANDSAT 8 DATA Kuncoro Teguh Setiawan; Syifa Wismayati Adawiah; Yennie Marini; Gathot Winarso
International Journal of Remote Sensing and Earth Sciences Vol. 13 No. 2 (2016)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2016.v13.a2448

Abstract

The remote sensing technique can be used to produce bathymetric map. Bathymetric mapping is important for the coastal zone and watershed management. In the previous study conducted in Menjangan Island of Bali, bathymetric extractin information from the top of the atmosphere (TOA) reflectance image of Landsat ETM+ data has R2 = 0.620. Not optimal  correlation value produced is highly influenced by the reflectance image of Landsat ETM+ data, were used, hence the lack of the research which became the basis of the present study. The study was on the Karang Lebar water of Thousand Islands, Jakarta. And the aim was to determine whether there was an increased correlation coefficient value of bathymetry extraction information generated from Surface reflectance and TOA reflectance imager of Landsat 8 data acquired on August 12, 2014. The method of extraction was done using algorithms Van Hengel and Spitzer (1991). Extraction   absolute depth information obtained from the model logarithm of Landsat 8 surface reflectance images and pictures TOA produce a correlation value of R2 = 0.663 and R2 = 0.712.
APPLICATION OF VAN HENGEL AND SPITZER ALGORITHM FOR INFORMATION ON BATHYMETRY EXTRACTION USING LANDSAT DATA Kuncoro Teguh Setiawan; Syifa Wismayati Adawiah; Takahiro OSAWA; I. Wayan Nuarsa
International Journal of Remote Sensing and Earth Sciences Vol. 11 No. 1 (2014)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2014.v11.a2603

Abstract

Remote sensing technology provides an opportunity for effective and efficient bathymetry mapping, especially in areas which level of depth changes quickly. Bathymetry information is very useful for hydrographic and shipping safety. Landsat medium resolution satellite imagery can be used for the extraction of bathymetry information. This study aims to extract information from the Landsat bathymetry by using Van Hengel and Spitzer rotation algorithm transformation (1991) in the water of Menjangan Island, Bali. This study shows that Van Hengel and Spitzer rotation algorithm transformation (1991) can be used to extract information on the bathymetry of Menjangan Island. Extraction of bathymetric information generated from Landsat TM imagery data in March 19, 1997 had shown the depth interval of (-0.6) m to (-12.3) m and R2 value of 0.671. While Data LANDSAT ETM + dated June 23, 2000 resulted in depth interval of 0 m to (-19.1) m and R2 value of 0.796. Furthermore, data LANDSAT ETM + dated March 12, 2003 resulted in depth interval of 0 m to (-22.5) m and R2 value of 0.931.