Claim Missing Document
Check
Articles

Found 8 Documents
Search

Sistem kendali posisi motor DC menggunakan state feedback controller dan real-time operating system: DC motor position control system using state feedback controller and real-time operating system Martin Martin
JITEL (Jurnal Ilmiah Telekomunikasi, Elektronika, dan Listrik Tenaga) Vol. 1 No. 1: March 2021
Publisher : Jurusan Teknik Elektro, Politeknik Negeri Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1372.556 KB) | DOI: 10.35313/jitel.v1.i1.2021.69-78

Abstract

Motor DC merupakan sistem penggerak yang paling banyak digunakan di bidang industri, otomasi, robotika, ataupun lainnya. Penggunaan sistem kendali banyak diterapkan untuk pengaturan pergerakan kecepatan ataupun posisi dari motor DC. Pada penelitian ini, state feedback controller dan penambahan kendali integral dengan estimator digunakan untuk mengendalikan posisi motor DC. Sistem dibuat berbasis real-time operarting system (RTOS) untuk pembacaan sensor, perhitungan matematis kendali, dan pengiriman sinyal pulse width modulation (PWM). Pengendalian dilakukan pada motor DC Quanser yang terhubung dengan Arduino Mega 2560 untuk membaca sensor encoder dan menampilkan data pengujian. Hasil pengujian menunjukkan bahwa state feedback controller dapat mengendalikan posisi motor DC dengan nilai penguat K sebesar 2,66 dan 115,37, nilai penguat N_bar sebesar 0,49 dan nilai estimator sebesar 7,75 dan 0,26. Penggunaan RTOS sebagai inti pemrograman dapat menyelesaikan permasalahan dalam pengerjaan task-task­ seperti pembacaan sensor, perhitungan parameter kendali, dan pengiriman sinyal kendali tanpa terjadi error selama pengujian sistem. Hasil analisa menunjukan keluaran sistem kendali posisi memiliki nilai overshoot sebesar 2,63% pada pengujian pertama dan 2,66% pada pengujian kedua.
Forward and inverse kinematics modeling of 3-DoF AX-12A robotic manipulator: Pemodelan kinematika maju dan terbalik dari manipulator robot 3-DoF AX-12A Ayu Widyacandra; Adnan Rafi Al Tahtawi; Martin Martin
JITEL (Jurnal Ilmiah Telekomunikasi, Elektronika, dan Listrik Tenaga) Vol. 2 No. 2: September 2022
Publisher : Jurusan Teknik Elektro, Politeknik Negeri Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35313/jitel.v2.i2.2022.139-150

Abstract

The presence of robots that can assist humans with heavy or dangerous work makes the need for robots more pressing at the moment. One type of robot needed is a robot arm, which is widely used in the manufacturing industry, such as in the assembly process and pick and place. The types of robotic arms used vary both in terms of configuration and the number of degrees of freedom. However, with different types of robotic arms, different models of movement are used. Therefore, research related to the modeling of the robotic arm continues to be carried out to obtain the appropriate movement of the robotic arm. One of the methods used as a first step in designing a robotic arm movement model is kinematics analysis. Kinematics analysis aims to analyze the movement of the robot arm without knowing what force causes the movement. This paper aims to produce an ideal movement model for the AX-12A 3-DoF robotic arm using forward kinematic and inverse kinematic analysis using two methods, the Denavit-Haterberg method and the geometric approach method. The difference from other papers is that this paper makes the kinematics model using Robotic, Vision, and Control (RVC) tools based on the Peter I. Corke model on MATLAB software first before implementing it on hardware. The results show that the error percentage for the forward kinematic model is 1.04% and the inverse kinematic is 0.76%, which means the two models achieved the target that the model’s error maximum must be less than 2%.
Visual Servoing pada Ball-on-Plate dengan Kendali PID dan Filter Kalman Martin Martin; Deni Ramdani; Yana Sudarsa; Feni Isdaryani
JTERA (Jurnal Teknologi Rekayasa) Vol 7, No 2: December 2022
Publisher : Politeknik Sukabumi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31544/jtera.v7.i2.2022.295-300

Abstract

Ball-on-plate merupakan sebuah sistem yang dapat menyeimbangkan sebuah bola di atas papan datar pada titik tertentu. Sistem ini merupakan bagian dari ilmu visual servo control yang menggunakan sensor kamera sebagai umpan balik sistem. Penelitian ini bertujuan menggunakan kendali PID untuk menyeimbangkan bola di atas papan dan sensor kamera dengan filter Kalman untuk mendeteksi objek. Proses membaca gerakan bola menggunakan algoritma pendeteksi objek berdasarkan filter Kalman, kemudian pendeteksian objek menghasilkan koordinat kartesian X dan Y. Koordinat tersebut merupakan umpan balik sistem pada kendali ball-on-plate. Sistem ini memiliki masukan berupa koordinat X dan Y, masukan tersebut akan dibandingkan dengan umpan balik sehingga didapatkan error posisi bola. Kendali PID mendapatkan masukan berupa nilai error posisi, kemudian akan menghasilkan nilai PWM untuk menggerakan servo sumbu X dan sumbu Y. Seluruh proses pendeteksian dan pengendalian dilakukan dengan embedded system menggunakan minicomputer. Hasil penelitian menunjukkan filter Kalman dapat bekerja dengan baik dengan parameter Q_frame sebesar 0,001, Q_rate sebesar 0,003, dan R sebesar 0,001. Sistem kendali PID dapat mengendalikan posisi bola dengan membutuhkan waktu 21,31 detik untuk mencapai setpoint.
Fuzzy Logic Controller Implementation for Motor DC Control Position With Real-Time Operating System M Martin; Dodi Budiman Margana; Endang Habinuddin
IJISTECH (International Journal of Information System and Technology) Vol 6, No 5 (2023): February
Publisher : Sekolah Tinggi Ilmu Komputer (STIKOM) Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/ijistech.v6i5.283

Abstract

A fuzzy Logic Controller (FLC) is a control system that expresses in linguistics, there are several ways to defuzzification such as Sugeno. This paper proposes FLC to control the Motor DC Module position within -180 to 180 degrees using Real-Time Operating System (RTOS) running in the microcontroller. The FLC design based on input errors and changes of errors get from the feedback module, and defuzzification uses Sugeno rules. The FLC design simulates in the simulator program with the motor dc ideal model to show the output response transient. Experimental is done by using step input and variable inputs, step input is used to calculate the output response transient, and variable input to show the reliability of the control scheme. The output response shows that the motor DC control position has 0% of overshoot, 0.9 seconds of settling time, and 2.7769 rise time from position -80 to 0. The FLC success controls the position motor, and RTOS can be implemented in a microcontroller based on ATMega 2560 series.
Fuzzy Logic Controller Implementation for Motor DC Control Position With Real-Time Operating System M Martin; Dodi Budiman Margana; Endang Habinuddin
IJISTECH (International Journal of Information System and Technology) Vol 6, No 5 (2023): February
Publisher : Sekolah Tinggi Ilmu Komputer (STIKOM) Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/ijistech.v6i5.283

Abstract

A fuzzy Logic Controller (FLC) is a control system that expresses in linguistics, there are several ways to defuzzification such as Sugeno. This paper proposes FLC to control the Motor DC Module position within -180 to 180 degrees using Real-Time Operating System (RTOS) running in the microcontroller. The FLC design based on input errors and changes of errors get from the feedback module, and defuzzification uses Sugeno rules. The FLC design simulates in the simulator program with the motor dc ideal model to show the output response transient. Experimental is done by using step input and variable inputs, step input is used to calculate the output response transient, and variable input to show the reliability of the control scheme. The output response shows that the motor DC control position has 0% of overshoot, 0.9 seconds of settling time, and 2.7769 rise time from position -80 to 0. The FLC success controls the position motor, and RTOS can be implemented in a microcontroller based on ATMega 2560 series.
Simulasi Sistem Monitoring dan Notifikasi Kecelakaan Pada Kendaraan Remote Control Adythia Rhamdani; Edi Rakhman; Martin Martin
SEMNASTERA (Seminar Nasional Teknologi dan Riset Terapan) Vol 3 (2021)
Publisher : SEMNASTERA (Seminar Nasional Teknologi dan Riset Terapan)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (551.112 KB)

Abstract

Kecelakaan lalu lintas adalah suatu persitiwa di jalan tidak disengaja dan diduga yang melibatkan kendaraan dengan atau tanpa pengguna jalan lain yang mengakibatkan korban manusia dan/atau kerugian harta benda. Berdasarkan Laporan kecelakaan lalu lintas yang dihimpun KNKT per 2016, jenis kecelakaan lalu lintas jalan yang mendominasi dari seluruh kejadian adalah jenis tabrakan sejumlah 42 kasus (65.6%), berikutnya adalah jenis kecelakaan terguling sejumlah 19 kasus (29,7%). Sedangkan yang paling kecil adalah jenis kecelakaan terbakar yaitu sejumlah 3 (tiga) kasus (4,7%). Masalah utama yang diangkat pada penelitian ini yaitu untuk pemantuan penyebab kecelakaan kendaraan di jalan raya. Pada proyek ini memiliki tujuan yaitu layaknya blackbox pada pesawat, alat yang dapat mengirim data kecelakaan secara lengkap dalam waktu yang cepat dengan posisi kecelakaan yang akurat. Sensor MPU6050 dipilih sebagai sensor kemiringan dengan nilai error 0,669o dan Sensor getaran SW-420 dipilih untuk mendeteksi getaran pada kendaraan sebagai indikasi kecelakaan. Ketika kecelakaan terjadi maka saat itu juga dikirim SMS dari lokasi kecelakaan ke gawai di nomor tujuan yang terdaftar lengkap dengan keterangan kecelakaan. Berdasarkan hasil pengujian, pengiriman SMS ini membutuhkan waktu 13,58 detik dengan persentase SMS lengkap yang terkirim adalah 94,15%. Setelah SMS dikirim maka pihak rumah sakit dapat membuka tautan GPS yang dikirim oleh sistem ini. Akurasi GPS yaitu 2,5meter dan membutuhkan waktu 43 detik untuk inisiasi awal saat sistem diaktifkan. 
Position control of AX-12 servo motor using proportional-integral-derivative controller with particle swarm optimization for robotic manipulator application Adnan Rafi Al Tahtawi; Fina Sonia Putri; Martin Martin
IAES International Journal of Robotics and Automation (IJRA) Vol 12, No 2: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v12i2.pp184-191

Abstract

This study proposes a control method for servo motor position using a proportional-integral-derivative (PID) controller with particle swarm optimization (PSO). We use an AX-12 servo motor that is commonly used for robotic manipulator applications. The angular position of the servo motor will be controlled using the PID control method with PSO as a controller gain optimizer. Firstly, the transfer function model of the servo motor is generated using open-loop model identification. Then, the integral error of the closed-loop system is used as PSO input in producing PID controller gain. As an objective function of the PSO algorithm, the integral time absolute error (ITAE) index performance is used. The proposed controller was tested and compared with PID with the Ziegler-Nichols (ZN) method. We also conduct the hardware experiment using Arduino Uno as a microcontroller using one AX-12 servo motor on the base joint of the manipulator robot. Based on the simulation result, the PID-PSO controller can achieve the best control response performance if compared to PID-ZN with a rise time is less than 0.5 s, a settling time of fewer than 8 s, and an overshoot under 1.2%. The effectiveness of the proposed PID-PSO controller is also validated by hardware experimental results.
Comparison Between Trot and Wave Gait Applied in Quadruped Robot Feriyonika Feriyonika; Noor Cholis Basjdaruddin; Martin Martin
ELKHA : Jurnal Teknik Elektro Vol. 15 No.1 April 2023
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v15i1.58341

Abstract

A Quadruped robot is a type of robot that moves on four legs and has a structure like a four-legged animal. The quality of movement based on mechanics and movement patterns on quadruped robots tends to have poor movement patterns. This study investigates the best movement between trot and wave gait by comparing the speed performance, stopping distance accuracy, and the tilt of the robot body angle. To minimize the influence of the mechanical quality of the robot, this study used two robots based on the type of servo used (based on the SG90 and MG995 servos). In this study, the motion pattern based on Trot and Wave gait is realized using Inverse Kinematics and Polynomial trajectory on each leg. The verification experiment showed that the Wave gait has better in both the robot body angle and distance error. In contrast the Trot gait has better in speed.