Claim Missing Document
Check
Articles

Found 28 Documents
Search

Penerapan Regresi Linier Berganda Untuk Memprediksi Harga Laptop Dengan Menggunakan Software Python Syaiful Nur Wardani; Nurmalitasari Nurmalitasari
Prosiding Seminar Nasional Teknologi Informasi dan Bisnis Prosiding Seminar Nasional Teknologi Informasi dan Bisnis (SENATIB) 2023
Publisher : Fakultas Ilmu Komputer Universitas Duta Bangsa Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pada era revolusi industri 4.0 saat ini perkembangan produk elektronik dan digital semakin maju pesat dengan berkembangnya suatu produk elektronik terutama laptop yang mempunyai berbagai macam-macam varian dan komponen penyusun yang sangat berkualitas membuat masyarakat ingin membelinya. Data yang digunakan dalam penelitian ini adalah data yang diperoleh dari website ELS Computer yang berjumlah 65 data. Metode yang digunakan dalam penelitian ini adalah Regresi linier. Regresi liniear adalah metode yang memodelkan variabel dependen dan variabel independen dengan menganalisis hubungan antar variabel-variabel tersebut. Penelitian ini menggunakan variabel dependennya adalah harga dengan variabel independennya adalah ukuran layar, RAM Storage, dan berat laptop. Tujuan dari penelitian ini adalah memprediksi harga laptop menggunakan metode regresi linier. Prediksi hasil evaluasi linier dalam nilai MAE,MSE,RMSE,dan MAPE menghasilkan nilai keakuratan prediksi sebesar 0.34.
Memprediksi Kenaikan Jumlah Penumpang Kereta Api Menggunakan Metode Regresi Linier Dengan Pemrograman Python Lucky Marsella; Nurmalitasari Nurmalitasari
Prosiding Seminar Nasional Teknologi Informasi dan Bisnis Prosiding Seminar Nasional Teknologi Informasi dan Bisnis (SENATIB) 2023
Publisher : Fakultas Ilmu Komputer Universitas Duta Bangsa Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penggunaan angkutan umum sangat bermanfaat bagi pemerintah untuk mengatasi masalah kemacetan lalu lintas yang merupakan masalah umum di Indonesia. Contoh angkutan umum yang disukai penduduk adalah kereta api. Tujuan dari penelitian ini adalah memprediksi laju pertumbuhan jumlah penumpang kereta api. Penelitian ini juga menggunakan metode regresi linier dengan menggunakan bahasa pemrograman Python. Data yang diambil dari website Badan Pusat Statistika (BPS) pada tahun 2022 mulai bulan Januari hingga Desember.
Perancangan Sistem Rekomendasi Tingkat Mortalitas Ibu Hamil Menggunakan Algoritma MOORA Bima Setya Gumelar; Moh Muhtarom; Nurmalitasari Nurmalitasari
Prosiding Seminar Nasional Teknologi Informasi dan Bisnis Prosiding Seminar Nasional Teknologi Informasi dan Bisnis (SENATIB) 2023
Publisher : Fakultas Ilmu Komputer Universitas Duta Bangsa Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Mortalitas merujuk pada jumlah kematian dalam suatu populasi atau kelompok dalam jangka waktu tertentu. WHO juga membedakan antara mortalitas umum (general mortality), yaitu jumlah kematian secara keseluruhan dalam populasi, dengan mortalitas spesifik (specific mortality), yaitu jumlah kematian yang disebabkan oleh penyakit atau kondisi tertentu. Metode yang digunakan adalah metode MOORA yang merupakan salah satu metode dari sistem pendukung keputusan. Melalui penerapan metode ini, peneliti akan membandingkan setiap ibu hamil berdasarkan kriteria yang akan menentukan rekomendasi kepada ibu hamil. Hasil dari penelitian ini mendapatkan hasil nilai tertinggi yaitu 7,556
Analisis Peserta Program Keluarga Berencana KB Aktif Menggunakan Metode Regresi Linear Di Kelurahan Combongan Sukoharjo Lindha Juniarta Suseno; Nurmalitasari Nurmalitasari
Prosiding Seminar Nasional Teknologi Informasi dan Bisnis Prosiding Seminar Nasional Teknologi Informasi dan Bisnis (SENATIB) 2023
Publisher : Fakultas Ilmu Komputer Universitas Duta Bangsa Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini bertujuan untuk menganalisis faktor-faktor yang berpengaruh terhadap jumlah peserta Program Keluarga Berencana (KB) aktif di Kelurahan Combongan, Sukoharjo menggunakan metode regresi linear. Data yang digunakan meliputi variabel independen seperti Kepala Keluarga (KK), Pasangan Usia Subur (PUS), Menopouse, Metoda Operasi Wanita (MOW), Medis Operasi Pria (MOP), Pembinaan Kader Institusi masyarakat Pedesaan (IMP) dan variabel dependen yaitu Perkiraan Permintaan Masyarakat(PPM) status keaktifan peserta KB (aktif atau tidak aktif). Penelitian ini menggunakan desain penelitian cross-sectional dengan sampel sebanyak 200 responden peserta KB yang dipilih secara purposive. Data dikumpulkan melalui kuesioner dan dianalisis menggunakan regresi linear untuk mengetahui hubungan antara variabel independen dan dependen. Hasil penelitian ini diharapkan dapat memberikan pemahaman yang lebih baik tentang faktor-faktor yang mempengaruhi jumlah peserta KB aktif di Kelurahan Combongan, Sukoharjo, serta memberikan sumbangan informasi bagi perencanaan dan pengembangan Program KB di tingkat lokal.
Analisis Sentimen Model Distilbert Multilingual Cased Dalam Mengklasifikasikan Ulasan Game Genshin Impact Abdullah Sajad; Nurmalitasari Nurmalitasari; Eko Purwanto
Computer Science Research and Its Development Journal Vol. 16 No. 2 (2024): June 2024
Publisher : LPPM Universitas Potensi Utama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22303/csrid.16.2.2024.124-136

Abstract

The evolution of information technology has revolutionized how humans engage with the world, particularly within the gaming sector. This paper explores the utilization of the DistilBERT Multilingual Cased model for analyzing sentiments expressed in Genshin Impact game reviews. The research methodology encompasses gathering data from Google PlayStore and Apple AppStore, manually labeling data, preprocessing it, and employing the DistilBERT Multilingual Cased model for analysis. The model's performance is assessed using metrics such as accuracy, precision, recall, and f1-score. Findings reveal that the model effectively categorizes sentiment in reviews, achieving an overall accuracy of 82%. Precision, recall, and f1-score metrics consistently surpass 0.77 across all sentiment categories. This study concludes that the DistilBERT Multilingual Cased model shows promise as a valuable tool for multilingual sentiment analysis within the realm of game reviews.
Sistem Rekomendasi Pemilihan Basic Skincare Menggunakan Metode Content Based Filtering Viona Putri Ardiana; Vihi Atina; Nurmalitasari Nurmalitasari
G-Tech: Jurnal Teknologi Terapan Vol 8 No 4 (2024): G-Tech, Vol. 8 No. 4 Oktober 2024
Publisher : Universitas Islam Raden Rahmat, Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70609/gtech.v8i4.4966

Abstract

Kumara Store offers a diverse range of cosmetics and skincare products in Mandan, Sukoharjo. Due to the extensive variety of products, customers frequently find it challenging to select basic skincare items. To address this issue, developing a recommendation system is crucial to assist customers in finding the most suitable products. This study employs the Content-Based Filtering method alongside the Rapid Application Development approach. The system features include product search and viewing capabilities, with recommendations being generated for users. Admin features allow for the management of attributes and data related to basic skincare products. The Content-Based Filtering technique recommends similar products based on their features or attributes. With 35 product samples and 6 attributes examined, the product Emina MS Pimple achieves the highest similarity score of 0.694 and will be recommended as a basic skincare product. This research can provide a foundation for future studies aimed at enhancing accuracy.
Penerapan Metode Content Based Filtering dalam Sistem Rekomendasi Pemilihan Produk Skincare Sulami, Atik; Atina, Vihi; Nurmalitasari, Nurmalitasari
STRING (Satuan Tulisan Riset dan Inovasi Teknologi) Vol 9, No 2 (2024)
Publisher : Universitas Indraprasta PGRI Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30998/string.v9i2.24066

Abstract

Hybrid Logistic Super Newton Model for Predicting Small Sample Size Data Nurmalitasari Nurmalitasari; Zalizah Awang Long; Nurchim Nurchim
JURNAL TEKNIK INFORMATIKA Vol 18, No 1: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v18i1.43929

Abstract

Logistic regression is a model commonly used for predicting data with large sample sizes. However, in real-world scenarios, many cases involve small datasets that need to be addressed using logistic regression. The aim of this research is to develop a hybrid logistic regression model to address issues with small sample sizes by combining the Newton Raphson and Super Cubic methods. This hybrid model is applied to predict student dropout at Universitas Duta Bangsa Surakarta. The performance of the hybrid model is evaluated using two main metrics: the convergence of the parameter approximation to measure the precision of parameter estimation, and the ROC curve to assess prediction accuracy. Experimental results show that the Hybrid Logistic Super Newton model outperforms the logistic regression Newton Raphson model, requiring only three iterations to converge, thus improving computational efficiency. Moreover, this model achieves higher accuracy, with an AUC of 0.8833. These findings suggest that the developed model has the potential to be applied in various fields, such as healthcare, finance, and others, offering an effective solution for accurate, real-time predictive analytics. Further research could focus on optimizing the model’s computational efficiency and exploring its application in other domains with small dataset challenges, such as healthcare and finance.