Claim Missing Document
Check
Articles

Found 13 Documents
Search

Analisis Pentingnya Digitalisasi & Infrastruktur Teknologi Informasi Dalam Institusi Pemerintahan : E-Government Nugraha Rachmatullah; Fenny Purwani
JURNAL FASILKOM Vol 12 No 1 (2022): Jurnal Fasilkom (teknologi inFormASi dan ILmu KOMputer)
Publisher : Unversitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/jf.v12i1.3512

Abstract

Penggunaan teknologi informasi dan digitalisasi untuk meningkatkan penyampaian layanan publik kepada warga dan perusahaan dikenal sebagai e-government. Tujuan dari artikel ini adalah menganalisis pentingnya transformasi digital dan infrastruktur teknologi informasi berupa e-government di institusi pemerintahan. Serta, penulis juga akan menjabarkan solusi yang menjadi rekomendasi. Metode yang digunakan dalam artikel ilmiah ini adalah kualitatif. Hasil analisis menunjukan bahwa masih terdapat permasalahan yang dihadapi Indonesia dalam proses digitalisasi dan perkembangan infrastruktut teknologi informasi ini. Maka dari itu, dibutuhkan pemanfaatan dan peningkatan kualitas e-government yang lebih baik, sekaligus meratakan pembangunan digitalisasi ini.
PERANCANGAN SISTEM INFORMASI E-INVENTARIS BARANG PADA PUSAT REHABILITASI NARKOBA AR RAHMAN Nasrullah; Fenny Purwani
JURNAL FASILKOM Vol 12 No 2 (2022): Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer)
Publisher : Unversitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/jf.v12i2.3938

Abstract

Currently the use of technology in the dissemination of information is very important for organizations or agencies. An information system is currently very supportive of activities for organizations or agencies which will then be reprocessed to be more useful for users of the information system itself. The Ar-Rahman Drug Rehabilitation Center itself is a rehabilitation center for drug addicts. To support their work, the staff at the Ar-Rahman Drug Rehabilitation Center are currently using the facilities available there. One of them is recording inventory of goods. Currently, the recording is still done manually, namely by recording what items are purchased and borrowed. From these causes, it is urgently needed to build an E-Inventory Information System Design at the Ar Rahman Drug Rehabilitation Center which functions to record any assets that are already owned that were previously recorded manually in the future to be digital. In the design it will use dfd and erd while the database uses waterfall. The expected results are an inventory system design that will be implemented in . Ar-Rahman Drug Rehabilitation Center and can be used as a basis for developers to create an inventory system. Ar-Rahman Drug Rehabilitation Center.
Penerapan Algoritma K-Nearest Neighbor dengan Euclidean Distance untuk Menentukan Kelompok Uang Kuliah Tunggal Mahasiswa Fenny Purwani; Ragil Tri Wahyudi; Irfan Dwi Jaya
Jurnal Pendidikan Informatika (EDUMATIC) Vol 6 No 2 (2022): Edumatic: Jurnal Pendidikan Informatika
Publisher : Universitas Hamzanwadi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29408/edumatic.v6i2.6547

Abstract

Single tuition fee or called UKT is the amount of tuition fee determined based on the student's economic ability. In its application, there are still many students who object to the UKT group that is obtained. Therefore, the university must apply the right and accurate method in determined the UKT group. This study aims to obtain the result of student’s UKT group classification using the K-Nearest Neighbor (KNN) algorithm with Euclidean Distance calculation and determine the accuracy of the algorithm with the optimal k value. This study used a quantitative method with a descriptive approach. The data collection techniques used are interviews, literature study, and documentation. The data that has been collected is 1,650 student’s UKT verification data for 2019-2021 which be processed with data mining using the RStudio software. The results showed that the classification with KNN can be applied in determined student’s UKT. With data testing many as 320 students, 23 students were determined to get UKT I, 149 UKT II, 129 UKT III, 32 UKT IV, and 2 students got UKT V. The accuracy of the algorithm is 87.58% in the Good Classification category. The optimal k for KNN obtained with K-Fold Cross Validation is k=1.