Claim Missing Document
Check
Articles

Found 4 Documents
Search

Medium Optimization for Antimicrobial Production By Newly Screened Lactic Acid Bacteria Rohmatussolihat, Rohmatussolihat; Lisdiyanti, Puspita; Yopi, Yopi; Widyastuti, Yantyati; Sukara, Endang
ANNALES BOGORIENSES Vol 22, No 1 (2018): Annales Bogorienses
Publisher : Research Center for Biotechnology - Indonesian Institute of Sciences (LIPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/ab.v22i1.322

Abstract

Lactic acid bacteria (LAB) are important for prevention of spoilage and pathogenic bacterial growth in foods due to their ability to generate antimicrobial substances. The objective of this study was to screen LAB for antimicrobial activity and to optimize culture medium for antimicrobial production using Response Surface Methodology (RSM) with Central Composite Design (CCD). Optimization of antimicrobial production of selected LAB was conducted with different combinations of glucose, NaCl, inoculum, and temperature. Our experimental results showed that from 129 LAB isolates, 55 showed significant inhibition against Bacillus subtilis, Escherichia coli, Micrococcus luteus, Staphylococcus aureus, Aspergillus niger, and Candida albicans. No isolates inhibited the growth of Aspergillus flavus. Lactobacillus plantarum LIPI13-2-LAB011 was selected for further study on culture medium optimization to inhibit the growth of C. albicans. From statistical analysis, the production of antimicrobial substances was significantly influenced by temperature, NaCl, and concentration of glucose. Furthermore, the optimum concentrations of glucose, concentration of inoculum, temperature, and NaCl were 1.63 %, 3.03%, 33.74°C, and 3.4%, respectively, with a maximum predicted inhibition index of 1.916, which increased 3.56-fold compared to that obtained in medium before optimization processes. The result was confirmed as when the optimum concentration of nutritions used, the inhibition index increased 3.12-fold.
The Potency of Indigenous Lactobacillus farciminis LIPI12-2-LAB033 Isolated from Non-Dairy Product of Indonesian Fermented Food as a New Source of β-galactosidase Enzyme Setiyoningrum, Fitri; Priadi, Gunawan; Afiati, Fifi; Rohmatussolihat, Rohmatussolihat; Anjani, Aulia Hesti
Industria: Jurnal Teknologi dan Manajemen Agroindustri Vol 10, No 2 (2021)
Publisher : Department of Agro-industrial Technology, University of Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.industria.2021.010.02.1

Abstract

AbstractThe β-galactosidase is an enzyme that plays an essential role in the lactose hydrolysis into glucose and galactose. This study examines the potential of β-galactosidase from several lactic acid bacteria (LAB) isolated from non-dairy products Indonesian fermented foods and purifies them to increase their specific activity. The enzyme was extracted using ultrasonication, purified with ammonium sulfate, and dialyzed with a cellulose membrane (11 kDa). The result of isolates tests showed that Lactobacillus farciminis LIPI12-2-LAB033 had the highest specific activity of 13.9 U/mg protein. Precipitation using 40% ammonium sulfate increased the specific activity up to 19.6 U/mg protein. This enzyme works optimally at a temperature of 40 °C and pH of 7. The specific activity of this enzyme increases to 75.6 U/mg protein after dialysis. The dialysis process purifies the enzyme 5.44 times with a yield of 26.7%. These findings indicate that Lactobacillus farciminis LIPI12-2-LAB033 can be considered as a source of β-galactosidase enzyme production.Keywords: enzyme, β-galactosidase, Lactobacillus farciminis, indigenous, partial purification  Abstrakβ-galaktosidase merupakan enzim yang berperan penting dalam hidrolisis laktosa menjadi glukosa dan galaktosa. Penelitian ini mengkaji potensi β-galaktosidase dari beberapa bakteri asam laktat yang diisolasi dari makanan fermentasi Indonesia yang bukan produk turunan susu dan memurnikannya untuk meningkatkan aktivitas spesifiknya. Enzim diekstraksi dari sel menggunakan ultrasonikasi kemudian dimurnikan dengan amonium sulfat dan didialisis dengan membran selulosa (11 kDa). Hasil uji isolat menunjukkan bahwa Lactobacillus farciminis LIPI12-2-LAB033 memiliki aktivitas spesifik tertinggi sebesar 13.9 U/mg protein. Pengendapan menggunakan ammonium sulfat 40% meningkatkan aktivitas spesifiknya hingga 19.6 U/mg protein. Enzim ini bekerja optimal pada suhu 40 °C dan pH 7. Aktivitas spesifik enzim ini meningkat hingga 75.6 U/mg protein setelah proses dialisis. Proses dialisis memurnikan enzim menjadi 5.44 kali lipat dengan rendemen 26.7%. Temuan ini menunjukkan bahwa Lactobacillus farciminis LIPI12-2-LAB033 dapat dipertimbangkan sebagai sumber produksi enzim β-galaktosidase.Kata kunci: enzim, β-galaktosidase, Lactobacillus farciminis, indigenous, purifikasi sebagian  
In Vitro Ruminal Fermentation and Degradability of Rice Husk on Rice Bran Substitution Fidriyanto, Rusli; Ridwan, Roni; Astuti, Wulansih Dwi; Rohmatussolihat, Rohmatussolihat; Nurul Fitri Sar; Watman, Muh; Widyastuti, Yantyati
Annales Bogorienses Vol. 24 No. 1 (2020): Annales Bogorienses
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Rice bran is a by-product of the rice milling process and has been well used as livestock feed. Rice bran is often adulterated with rice husk. The objective of this study was to evaluate the in vitro ruminal fermentation characteristics of rice bran with various compositions of rice husk and assess the relationship between rice husk addition and rice bran quality. The experiment was arranged in a completely randomized design with rice husk addition as a factor and three replications. Data of proximate value, gas production, ruminal degradability, and volatile fatty acid production were analyzed by analysis of variance. Moreover, significant effects of each treatment in the in vitro fermentation were further analyzed by Duncan's multiple range test (P<0.05). It was shown that the addition of rice husk to rice bran could increase acetic acid level, but it reduced potential gas production, gas production rate, organic matter and dry matter digestibility, and propionic acid level. Interestingly, the linear regression of dry matter digestibility, organic matter digestibility, and potential gas production showed the high adjusted R2 values. Moreover, this study also revealed that 10% of rice husk substitution on rice bran could significantly reduce the dry matter digestibility.
Medium Optimization for Antimicrobial Production By Newly Screened Lactic Acid Bacteria Rohmatussolihat, Rohmatussolihat; Lisdiyanti, Puspita; Yopi, Yopi; Widyastuti, Yantyati; Sukara, Endang
Annales Bogorienses Vol. 22 No. 1 (2018): Annales Bogorienses
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/ann.bogor.2018.v22.n1.1-11

Abstract

Lactic acid bacteria (LAB) are important for prevention of spoilage and pathogenic bacterial growth in foods due to their ability to generate antimicrobial substances. The objective of this study was to screen LAB for antimicrobial activity and to optimize culture medium for antimicrobial production using Response Surface Methodology (RSM) with Central Composite Design (CCD). Optimization of antimicrobial production of selected LAB was conducted with different combinations of glucose, NaCl, inoculum, and temperature. Our experimental results showed that from 129 LAB isolates, 55 showed significant inhibition against Bacillus subtilis, Escherichia coli, Micrococcus luteus, Staphylococcus aureus, Aspergillus niger, and Candida albicans. No isolates inhibited the growth of Aspergillus flavus. Lactobacillus plantarum LIPI13-2-LAB011 was selected for further study on culture medium optimization to inhibit the growth of C. albicans. From statistical analysis, the production of antimicrobial substances was significantly influenced by temperature, NaCl, and concentration of glucose. Furthermore, the optimum concentrations of glucose, concentration of inoculum, temperature, and NaCl were 1.63 %, 3.03%, 33.74°C, and 3.4%, respectively, with a maximum predicted inhibition index of 1.916, which increased 3.56-fold compared to that obtained in medium before optimization processes. The result was confirmed as when the optimum concentration of nutritions used, the inhibition index increased 3.12-fold.