Claim Missing Document
Check
Articles

Found 3 Documents
Search

MODEL KNOWLEDGE MANAGEMENT SYSTEM DI PROGRAM STUDI SISTEM INFOMASI KELAUTAN Novi Sofia Fitriasari; Dhea Rahma Azhari; Muhammad Ghifari Shafa; Amien Rais; Taufiq Ejaz Ahmad
Jurnal Kemaritiman: Indonesian Journal of Maritime Vol 1, No 2 (2020): Desember 2020
Publisher : Universitas Pendidikan Indonesia (UPI) Kamous Serang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Instansi Pendidikan sebagai Learning Organization dituntut untuk memiliki kemampuan didalam mendapatkan, menciptakan dan mentransfer pengetahuan dengan memanfaatkan teknologi informasi dan komunikasi (TIK) serta menggunakannya untuk mendukung dalam pengambilan keputusan. Keberhasilan penerapan TIK tidak hanya dilihat dari teknologi yang digunakan tetapi harus memperhatikan komponen sistem yang lain. Oleh karena itu penelitian ini bertujuan mengidentifikasikan model Knowledge Management System (KMS) diĀ  Program Studi Sistem Informasi Kelautan dengan menerapkan lima elemen subsistem yaitu organisasi, Tim Knowledge Management(KM), Proses KM, Teknologi KM dan Artefak Pengetahuan. Penerapan elemen Organisasi menghasilkan visi, misi, strategi dan tujuan, elemen Tim KM menghasilkan knowledge worker yang terdiri dari Ketua Kelompok Bidang Keahlian, Koordinator matakuliah, Ketua Program Studi, Staf IT, Dosen, mahasiswa dan Instansi di luar lingkup Program Studi yang mendukung kegiatan Tridharma Perguruan Tinggi, elemen proses KM melibatkan aktivitas pembelajaran, penelitian yang mendukung social ecological system dan pengabdian pada masyarakat yang berpusat pada logic ecological knowledge, serta peningkatan kompetensi yang melibatkan dosen dan mahasiswa. Elemen Teknologi KM menghasilkan aplikasi sistem manajemen pengetahuan (ASMAPE) dan Elemen artefak pengetahuan menghasilkan pengetahuan eksplisit dari knowledge worker, pengetahuan tersebut terdiri dari domain Sistem Informasi, Perikanan, Sistem Informasi Geografis, Penginderaan Jauh Kelautan dan Ilmu Kelautan.
Automatic Geographic Information System algorithm for temporal mangrove observation: A case study in Gopek Beach, North Banten Della Ayu Lestari; Willdan Aprizal Arifin; Novi Sofia Fitriasari; Taufiq Ejaz Ahmad; Amien Rais; Dhea Rahma Azhari
Jurnal Pendidikan Geografi: Kajian, Teori, dan Praktek dalam Bidang Pendidikan dan Ilmu Geografi Vol 27, No 2 (2022)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um017v27i22022p163-174

Abstract

Temporal observation is a series of processes started by collecting the necessary data, which is then processed, so that valid information is obtained to support the right decision. To increase the ease of data collection, an automatic algorithm is needed to increase efficiency, shorten the time, and reduce the required resources. The automatic algorithm based on the geographic information system developed in this study was applied to monitoring mangrove forests in Gopek Beach, located on the north coast of Serang, Banten. Using the cloud computing process from an automatic algorithm, the results of vegetation monitoring showed increased efficiency in time and resources. Thus, this study can be used for Geographic Information Systems learning materials in schools or universities.
Model Prediksi Kenaikan Permukaan Air Laut Menggunakan Data Satelit Altimery Jason-1 dengan pendekatan Algoritma Long-Short Term Memory (Studi Kasus: Teluk Jakarta) Amien Rais; Della Ayu Lestari; Willdan Aprizal Arifin
Jurnal Georafflesia: Artikel Ilmiah Pendidikan Geografi Vol 7 No 2 (2022)
Publisher : Universitas Prof. Dr. Hazairin, S.H

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32663/georaf.v7i2.3203

Abstract

The capital city of Jakarta is the area with the highest population density in Indonesia with a population density of 16,937 people/sq km. Topographically, DKI Jakarta is located in the lowlands and is vulnerable to natural disasters, especially sea level rise. Data on sea level rise records show The trend of sea level rise is clearly visible in this tide gauge record from 1984 to 2004, at a rate of about 10mm/year. This certainly needs special attention to find out how much sea level rise will be so that it can be used as a coastal reference in making Jakarta regional policies. One way to find out the rate of sea level rise is by forecasting. In modeling time series forcing requires a model that can accommodate the time interval and the variables involved in the calculation. Each variable has a value depending on its past value and also on other past value variables. Therefore, we use the Long Short-Term Memory (LSTM) algorithm for forecasting sea level rise in Jakarta Bay. We use data from the last 30 years to model sea level rise in Jakarta Bay. The results show that there will be a maximum increase of 140 centimeters in 2040 with a maximum area of 6144.2 ha.