Achmad Nuruddin Safriandono
Sultan Fatah University

Published : 11 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 11 Documents
Search

Aspect-Based Sentiment Analysis on E-commerce Reviews using BiGRU and Bi-Directional Attention Flow Setiadi, De Rosal Ignatius Moses; Warto, Warto; Muslikh, Ahmad Rofiqul; Nugroho, Kristiawan; Safriandono, Achmad Nuruddin
Journal of Computing Theories and Applications Vol. 2 No. 4 (2025): JCTA 2(4) 2025
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.12376

Abstract

Aspect-based sentiment Analysis (ABSA) is vital in capturing customer opinions on specific e-commerce products and service attributes. This study proposes a hybrid deep learning model integrating Bi-Directional Gated Recurrent Units (BiGRU) and Bi-Directional Attention Flow (BiDAF) to perform aspect-level sentiment classification. BiGRU captures sequential dependencies, while BiDAF enhances attention by focusing on sentiment-relevant segments. The model is trained on an Amazon review dataset with preprocessing steps, including emoji handling, slang normalization, and lemmatization. It achieves a peak training accuracy of 99.78% at epoch 138 with early stopping. The model delivers a strong performance on the Amazon test set across four key aspects: price, quality, service, and delivery, with F1 scores ranging from 0.90 to 0.92. The model was also evaluated on the SemEval 2014 ABSA dataset to assess generalizability. Results on the restaurant domain achieved an F1-score of 88.78% and 83.66% on the laptop domain, outperforming several state-of-the-art baselines. These findings confirm the effectiveness of the BiGRU-BiDAF architecture in modeling aspect-specific sentiment across diverse domains.