R. Heri Soelistyo
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

PELABELAN TOTAL TITIK AJAIB GRAF HASIL KALI KARTESIUS DARI GRAF SIKEL nita, maria; Soelistyo, R. Heri
MATEMATIKA Vol 13, No 1 (2010): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (346.309 KB)

Abstract

A vertex-magic total labeling of graph , with the vertices  and the edges  is the bijection from  to the set of integers , and for each vertex  in  satisfying ,  is the vertex that adjacent with , then  named a magic constant in . The sum of the label of  and the labels of all edges  incident to the  is the same for all vertices of  and  named vertex-magic total graph. Vertex-magic total labeling of cartesian products of cycles, with the type , with  and  is odd are the labeling to the  and the concept used to label  is -vertex antimagic total labeling and to label  it is used vertex magic total labeling of cycles, with the cycle is odd.  
Pelabelan E-cordial pada Graf Hasil Cartesian Product Kholis Widyasmedi; R. Heri Soelistyo
Jurnal Matematika Vol 1, No 1 (2012): jurnal matematika
Publisher : MATEMATIKA FSM, UNDIP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (553.418 KB)

Abstract

Diberikan sebuah graf G=(V,E) . Pelabelan e-cordial adalah pemetaan biner f:E→{0,1} yang menginduksi pelabelan titik yang didefinisikan dengan f*=uvϵEfuv(mod 2) ; sehingga memenuhi ef0-ef(1)≤1 dan vf0-vf(1)≤1 . Syarat perlu untuk sebuah graf G, untuk memenuhi sebuah pelabelan e-cordial adalah n≢2(mod 4) . Sedangkan Graf Kn adalah e-cordial untuk semua n≢2(mod 4) dan graf Wn adalah e-cordial jika dan hanya jika n≢1mod 4. Graf G merupakan graf hasil cartesian product untuk beberapa graf yang dioperasikan dengan graf path P2yaitu Kn×P2 dan Pn×P2 adalah  e-cordial untuk n genap serta Wn×P2 dan K1,n×P2 adalah E-cordial untuk n ganjil.
INTEGRASI NUMERIK MENGGUNAKAN METODE GAUS KUADRATUR DENGAN PENDEKATAN INTERPOLASI HERMIT DAN POLINOMIAL LEGENDRE Sutrisno sutrisno; R. Heri Soelistyo
MATEMATIKA Vol 12, No 3 (2009): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (5.646 KB)

Abstract

Gaus Quadrature Formula is better alternative than Newton Cotes Formula. The principal of Gaus Quadrature Formula determine unequal interval to minimize the error of approximation of integration. Formulation Gaus Quadrature on limited interval for numerical integration can use Hermite Interpolation Formula. Then, using the properties of Legendre polynomial which orthogonal on [-1,1] can determined nodes and weights. So, based on nodes and weight can be determined a Gaus – Legendre Quadratur Formula.