Joko Sujono
Departemen Teknik Sipil Dan Lingkungan, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta.

Published : 14 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 14 Documents
Search

PENGARUH KONDISI AWAL KELENGASAN TANAH TERHADAP DEBIT PUNCAK HIDROGRAF SATUAN Sasmito, Sasmito; Triatmodjo, Bambang; Sujono, Joko; Harto, Br, Sri
Jurnal Teknik Sipil Vol 13, No 3 (2015)
Publisher : Program Studi Teknik Sipil Fakultas Teknik Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (239.144 KB) | DOI: 10.24002/jts.v13i3.879

Abstract

Abstrak: Hidrograf satuan adalah salah satu cara untuk memperkirakan besarnya banjir di sungai akibat hujan pada suatu DAS. Hidrograf satuan sangat populer dan dipakai secara luas di dunia. Metode ini mempunyai fleksibilitas yang rendah terhadap hujan yang berbeda, sehingga hidrograf yang dihasilkan berbeda-beda pada setiap hujan. Hal ini diduga disebabkan antara lain karena teori hidrograf satuan mengabaikan pengaruh kondisi awal kelengasan tanah (antecedent soil moisture condition, AMC) pada proses penurunan hidrograf satuan. Tulisan ini menyajikan hasil penelitian tentang pengaruh AMC terhadap debit puncak hidrograf satuan observasi (qp-obs). Dalam penelitian ini variabel AMC didekati dengan besaran defisit kelengasan tanah (soil moisture deficit, SMD) yang mempunyai makna berlawanan dengan AMC. SMD direpresentasikan dengan variabel Sc (storage capacity) yakni volume udara di dalam pori tanah yang ditinggalkan air karena terevapotranspirasi keluar. Penelitian dilaksanakan dengan menggunakan data hidrologi (hujan, debit aliran, dan evaporasi) yang dikumpulkan dari 3 DAS hulu (upper catchment) di kawasan Gunung Merapi. Percobaan penelitian dilakukan dengan cara menurunkan hidrograf satuan dengan dua cara, yakni cara konvensional (Collins) menghasilkan hidrograf satuan observasi (HSosb), dan cara simulasi menggunakan model tangki menghasilkan hidrograf satuan simulasi (HSsim). Analisis pengaruh Sc dilakukan terhadap debit puncak HSosb dan debit puncak HSsim. Penelitian menghasilkan temuan yang dapat disimpulkan sebagai berikut: (1) Hubungan Sc dan debit puncak hidrograf satuan, menunjukkan semakin besar Sc (semakin kecil AMC) debit puncak HSobs semakin kecil, (2) Formula koreksi yang didapat berbentuk fungsi eksponensial (qp-obs)/(qp-obs-kor)=1,104 e-0,012Sc, dengan qp-obs-kor adalah debit puncak hidrograf satuan observasi terkoreksi, (3)  HS observasi terkoreksi rerata mempunyai debit puncak puncak paling tinggi dibanding debit puncak HSS Nakayasu dan debit puncak HSS Gama 1.
Analisis Return Flow antar Bendung (Studi Kasus Bendung Klampok-Plakaran dan Bendung Sekarsuli) Nurrochmad, Fatchan; Rahardjo, Adam Pamudji; Sujono, Joko; Refika, Cut Dwi
Jurnal Teknik Sipil Vol 23, No 1 (2016)
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1105.305 KB) | DOI: 10.5614/jts.2016.23.1.5

Abstract

Abstrak. Return flow berasal dari aliran yang disadap untuk keperluan irigasi yang sebagian alirannya tidak dimanfaatkan oleh lahan irigasi kembali ke sungai berupa limpasan dan rembesan. Bendung yang menjadi tinjauan penelitian ini adalah Bendung Klampok-Plakaran dan Bendung Sekarsuli yang berada di Kabupaten Sleman Daerah Istimewa Yogyakarta. Analisis return flow dilakukan dengan Model Tangki. Bentuk Model Tangki disusun berdasarkan kondisi sawah, kebun tebu dan kolam ikan. Parameter Model Tangki yaitu koefisien keluaran dari lubang samping, koefisien keluaran dari lubang bawah dan tinggi tampungan di tangki. Keluaran dari lubang samping tangki berupa limpasan dan rembesan merupakan nilai return flow. Model Tangki dikalibrasi dan diverifikasi untuk mendapatkan Model Tangki yang sesuai dengan kondisi di lapangan. Indikator ketelitian yang digunakan adalah koefisien korelasi (R) sebesar 0,97, Volume Error (VE) sebesar 5,00 % dan Root Mean Square Error (RMSE) adalah sebesar 0,03. Nilai return flow pada musim tanam I (Oktober-Januari), musim tanam II (Februari-Mei) dan musim tanam III (Juni-September) berturut-turut sebesar 67,06%; 24,05% dan 21,38%. Verifikasi ketelitian parameter Model Tangki dilakukan pada musim tanam 2009-2010. Nilai ketelitian untuk verifikasi koefisien korelasi (R), Volume Error (VE) dan Root Mean Square Error (RMSE) masing-masing adalah 0,81; 5,20 dan 0,14. Abstract. Return flow occures when the intake flow for irrigation is not utilized and return back to the river, whether by runoff or seepage. This study focused on Klampok-Plakaran and Sekarsuli weirs in Sleman Regency Special Region of Yogyakarta. The return flow analysis was carried out by using the Tank Model. The model was adjusted to the field condition, such as paddy fields, cane plantation and fish ponds. Parameters in the Tank Model were the output coefficient from the side flow and below, and the height of storage in the tank. Output from the side of the tank consisted of runoffs and seepage, which were the return flow value. The Tank Model was calibrated and verified to obtain the most proper Tank Model suitable to the condition on field. The accuracy indicators consists of correlation coefficient (R), Volume Error (VE), and Root Mean Square Error (RMSE) of 0,97; 5,00 % and 0,03, respectively. Values of return flow during the cultivation season I (October - January), cultivation season II (February - Mei) and cultivation season III (June - September) were 67,06%, 24,05% and 21,38%, respectively. Model verification parameters were carried out on cultivation season 2009-2010. Value accuracy for the correlation coefficient (R), Volume Error (VE) and root mean square error (RMSE) are 0,81; 5,20 dan 0,14 respectively.
UNJUK KERJA ALTERNATIF PENGENDALIAN BANJIR BATANG ANAI DAN BATANG KANDIS SUMATERA BARAT Eriza, Corri; Istiarto, Istiarto; Sujono, Joko
Civil Engineering Forum Teknik Sipil Vol 18, No 2 (2008): MEI 2008
Publisher : Civil Engineering Forum Teknik Sipil

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (432.344 KB)

Abstract

Flood occurs almost every year due to the floatation of Batang Anai and Batang Kandis. In 2001, the local authority made a plan to control the flood in both rivers, which was implemented in Anai-Kandis River Improvement with the alternatives of controlling flood by handling the river courses, such as improving and widening the river channel, and decreasing the peak of discharges by making dams or retarding basin. Performance of flood control structures are made of three alternatives based on the information gathered. First alternatives suggest for repairing the river course and widening the river channel (with levee) in both rivers and floodway in Batang Kandis. Second alternative is similar with the first alternative except negation the leeve in Batang Anai and replenishment of floodgate in Batang Kandis. Third alternative for Batang Anai is identical to the second alternative and also widening the river channel throughout Batang Kandis. The analysis includes the analysis of sufficiency of channel to drain the design discharge and sediment transport analysis for the alternative with the best performance, which both could be doing with auxiliaries of Software HEC-RAS version 4.0 betas. As the result, controlling river by repairing the river course and widening the river channel throughout Batang Anai and Batang Kandis (3rd alternative) gives the best performance comparing to the others alternatives, due to the fact that it could be able to canalize the design discharge of Q50 (1417 m3/s) in Batang Anai and Q25 (293 m3/s) in Batang Kandis. The simulation of transport sediment in Batang Anai with the 3rd alternatives implementation shows the biggest trend of erosion and deposition in a row, located next to National bridge downstream (RS 108) and precisely in downstream of RS 108 i.e., RS 107.
HIDROGRAF SATUAN: PERMASALAHAN DAN ALTERNATIVE PENYELESAIAN Sujono, Joko; Jayadi, Rachmad
Civil Engineering Forum Teknik Sipil Vol 17, No 2 (2007): MEI 2007
Publisher : Civil Engineering Forum Teknik Sipil

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (231.616 KB)

Abstract

Unit hydrograph is one of flood design method that commonly used in Indonesia. Problems emerge in the unit hydrograph application including high rainfall variability both time and space, lack of automatic rainfall data needed for unit hydrograph derivation. However, the output of the catchment system called hydrograph that represent all the phenomena in the system is available. So, effect of rainfall variability on unit hydrograph and the possibility to derive unit hydrograph based on hydrograph data without rainfall data need to be studied. Unit hydrograph derivation is done by using different rainfall input i.e. single station, rainfall catchment and inverse effective rainfall derived based on hydrograph alone. The resulted unit hydrographs are then used for design flood calculation. Results show that the resulted unit hydrographs vary among the different rainfall inputs. The difference in peak relative to unit hydrograph derived based on average rainfall for Bedog, Code and Winongo catchments could reach -18%, -30% and -11%, respectively. This result indicates that in the catchment studied, the rainfall variability is relatively high. However, the difference in flood peak is quite small, that is up to -12% for all the catchments. There is a trend that the station closest to the catchment centroid gives small bias in design flood relative to the design flood computed based on average rainfall.
MODEL HIDROLOGI TERDISTRIBUSI UNTUK SIMULASI HIDROGRAF BANJIR MENGGUNAKAN DATA RADAR Pamungkas, Yusuf Aji; Jayadi, Rachmad; Sujono, Joko
Jurnal Teknik Sipil Vol 26, No 3 (2019)
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jts.2019.26.3.9

Abstract

AbstrakPenerapan model hidrologi hujan-aliran terdistribusi sebagai bagian penting dari sistem peringatan dini banjir di wilayah lereng Gunung Merapi, membutuhkan input data hujan dengan resolusi spasial yang memadai. Oleh karena itu penggunaan data hujan dari ARR yang memiliki resolusi spasial yang rendah akan menyebabkan hasil hitungan hujan rata-ratanya (DAS) menjadi kurang teliti. Alternatif yang dapat dilakukan adalah menggunakan data hujan radar yang memiliki resolusi spasial dan temporal yang jauh lebih baik dibandingkan ARR. Pada penelitian ini dilakukan kajian hasil hitungan hidrograf banjir di wilayah lereng Gunung Merapi. Pemodelan hujan-aliran secara terdistribusi dilakukan dengan menentukan resolusi grid dari DAS dengan titik tinjau hitungan pada pos AWLR. Hujan pada setiap grid DAS dihitung sebagai rata-rata data hujan radar semua piksel di area masing-masing grid DAS. Simulasi limpasan permukaan DAS menggunakan paket perangkat lunak WMS v.10.1 dengan metode Hidrograf Satuan ModClark. Evaluasi ketelitian hidrograf banjir hasil simulasi didasarkan pada indikator kesalahan relatif debit puncak (peak discharge), waktu puncak (time to peak) dan volume limpasan permukaan (direct runoff volume). Hasil hitungan simulasi limpasan permukaan DAS menunjukkan bahwa perlu dilakukan telaah yang rinci terhadap faktor losses dan kesesuaian parameter hidrograf satuan, untuk menghasilkan kalibrasi model yang akurat. AbstractThe application of the distributed rainflow-runoff hydrological model as an important part of the early flood warning system in the slopes of Mount Merapi, requires rainfall data input with adequate spatial resolution. Therefore, the use of rainfall data from ARR which has a low spatial resolution will cause the results of the average rainfall (watershed) to be less precise. An alternative that can be done is to use radar rainfall data that has a far better spatial and temporal resolutions than the data from ARR. In this research, a study of the results of the flood hydrograph calculation in the slopes of Mount Merapi was conducted. The distributed rainflow-runoff modeling was done by determining the grid resolution of the watershed with a reference point of the calculation in the AWLR. Rain on each watershed grid was calculated as the average radar rainfall data of all pixels in the area of each watershed grid. Watershed surface runoff simulation used the WMS v.10.1 software package with the ModClark Unit Hydrograph method. The evaluation of the flood hydrograph simulation results' accuracy was based on indicators of the relative error of peak discharge, time to peak and direct runoff volume. The results of the watershed surface runoff simulation showed that a detailed study of the loss factors and the compatibility of the unit hydrograph parameter is necessary to produce an accurate model calibration.
Koefisien Tanaman Padi Sawah pada Sistem Irigasi Hemat Air Joko Sujono
agriTECH Vol 31, No 4 (2011)
Publisher : Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (290.859 KB) | DOI: 10.22146/agritech.9642

Abstract

Traditional irrigation for paddy rice is the leading of consumer of water, about 80 % of the water resource availabilityused for irrigation purpose. This phenomenon is related to the way how to estimate the crop water requirement where crop coefficient for paddy rice (k ) (Prosida) is always greater than one starting from planting up to nearly harvesting. In this research, a number of water saving irrigations (WSI) systems for paddy rice cultivation using pots such asalternate wetting and drying (AWD), shallow water depth with wetting and drying (SWD), semi-dry cultivation (SDC), system of rice intensification (SRI), and  AWD with mulch (AWD-Mul) were applied. The amount of irrigated water and when it should be irrigated depend on evapotranspiration rate, soil moisture condition and the WSI system used. For this purpose, daily measurement of the pot weight was carried out. Crop coefficient (k )  is then caluculated as a cratio between crop and reference evapotranspiration computed using Penman-Montheit  method. Results show that up to 45 days after transplanting, the k of WSI treatments were around half of the k (Prosida) values currently used for computing the water requirement, whereas at the productive stage the k of WSI systems were relatively equal (AWD, SDC) to or greater (SRI, SWD) than the k (Prosida). Based on the the k values, the AWD and the SDC systems could save much water compared to the SRI or the SWD. Water saving could be increased by applying the AWD with mulch.ABSTRAKIrigasi padi sawah dengan sistem tradisional merupakan sistem irigasi  yang boros air, hampir 80 % sumber air yang ada untuk irigasi. Hal ini tidak terlepas dari perhitungan kebutuhan air tanaman dengan nilai koefisien tanaman (k) menurut Standar Perencanaan Irigasi (Prosida) selalu lebih besar dari satu mulai dari tanam hingga menjelang panen.Dalam penelitian ini beberapa metoda budidaya padi hemat air seperti alternate wetting and drying (AWD), shallow water depth with wetting and drying (SWD), semi-dry cultivation (SDC), AWD dengan mulsa (AWD-Mul) dan system of rice intensification (SRI)  diterapkan di lahan percobaan (pot). Jumlah dan kapan air irigasi harus diberikan tergantung pada besarnya laju penguapan, kelembaban tanah dan sistem irigasi hemat air yang digunakan. Untuk itu penimbangan pot dilakukan setiap hari sebelum dan sesudah pemberian air irigasi. Selanjutnya k dihitung berdasarkan ratio antara evapotranspirasi tanaman (aktual) dengan evapotranspirasi acuan yang dihitung dengan metoda Penman-Montheit berdasarkan data klimat yang tersedia.  Hasil penelitian menunjukkan bahwa pada awal tanam hingga fase pertumbuhan vegetatif (hingga 45 hari setelah tanam) koefisien tanaman k  sistem irigasi hemat air hampir setengahnya cdari nilai k (Prosida). Sebaliknya pada fase produktif nilai k metoda sistem irigasi hemat air hampir sama (AWD dan SDC) atau lebih besar (SRI, SWD) dari nilai k (Prosida). Berdasarkan nilai k , maka sistem pemberian air AWD dan SDC dapat menghemat air jauh lebih besar dibandingkan dengan metoda SRI dan SWD, penghematan air dapatditingkatkan apabila sistem AWD dikombinasikan dengan mulsa.
PENGARUH KONDISI AWAL KELENGASAN TANAH TERHADAP DEBIT PUNCAK HIDROGRAF SATUAN Sasmito Sasmito; Bambang Triatmodjo; Joko Sujono; Sri Harto, Br
Jurnal Teknik Sipil Vol. 13 No. 3 (2015)
Publisher : Program Studi Teknik Sipil Fakultas Teknik Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (239.144 KB) | DOI: 10.24002/jts.v13i3.879

Abstract

Abstrak: Hidrograf satuan adalah salah satu cara untuk memperkirakan besarnya banjir di sungai akibat hujan pada suatu DAS. Hidrograf satuan sangat populer dan dipakai secara luas di dunia. Metode ini mempunyai fleksibilitas yang rendah terhadap hujan yang berbeda, sehingga hidrograf yang dihasilkan berbeda-beda pada setiap hujan. Hal ini diduga disebabkan antara lain karena teori hidrograf satuan mengabaikan pengaruh kondisi awal kelengasan tanah (antecedent soil moisture condition, AMC) pada proses penurunan hidrograf satuan. Tulisan ini menyajikan hasil penelitian tentang pengaruh AMC terhadap debit puncak hidrograf satuan observasi (qp-obs). Dalam penelitian ini variabel AMC didekati dengan besaran defisit kelengasan tanah (soil moisture deficit, SMD) yang mempunyai makna berlawanan dengan AMC. SMD direpresentasikan dengan variabel Sc (storage capacity) yakni volume udara di dalam pori tanah yang ditinggalkan air karena terevapotranspirasi keluar. Penelitian dilaksanakan dengan menggunakan data hidrologi (hujan, debit aliran, dan evaporasi) yang dikumpulkan dari 3 DAS hulu (upper catchment) di kawasan Gunung Merapi. Percobaan penelitian dilakukan dengan cara menurunkan hidrograf satuan dengan dua cara, yakni cara konvensional (Collins) menghasilkan hidrograf satuan observasi (HSosb), dan cara simulasi menggunakan model tangki menghasilkan hidrograf satuan simulasi (HSsim). Analisis pengaruh Sc dilakukan terhadap debit puncak HSosb dan debit puncak HSsim. Penelitian menghasilkan temuan yang dapat disimpulkan sebagai berikut: (1) Hubungan Sc dan debit puncak hidrograf satuan, menunjukkan semakin besar Sc (semakin kecil AMC) debit puncak HSobs semakin kecil, (2) Formula koreksi yang didapat berbentuk fungsi eksponensial (qp-obs)/(qp-obs-kor)=1,104 e-0,012Sc, dengan qp-obs-kor adalah debit puncak hidrograf satuan observasi terkoreksi, (3)  HS observasi terkoreksi rerata mempunyai debit puncak puncak paling tinggi dibanding debit puncak HSS Nakayasu dan debit puncak HSS Gama 1.
Analisis Karakteristik Hujan Ekstrim Menggunakan Model Iklim di Wilayah Gunung Merapi Elenora Gita Alamanda Sapan; Joko Sujono; Karlina Karlina
MEDIA KOMUNIKASI TEKNIK SIPIL Volume 28, Nomor 1, JULI 2022
Publisher : Department of Civil Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (895.615 KB) | DOI: 10.14710/mkts.v28i1.36332

Abstract

Extreme rainfall is one of the trigger factors for debris floods in stratovolcanos. It caused by volcanic materials will be easily eroded in large quantity with surface water flow as the result of extreme rainfall. Extreme rainfall is avnatural phenomenon which is often related with climate change. In the future, changes in extreme rainfall characteristics may occur. Therefore, it’s necessary to conduct extreme rainfall analysis for historical and future periods. In this study, the characteristics of rainfall analyzed were the variability of extreme rain as shown by trend analysis of extreme rain indices namely RTOT. Hourly rainfall data at eight rain stations used as input. Future rainfall data was projected using the global climate model CanESM2 (RCP4.5 and RCP8.5 and downscaling process using Statistical Downscaling Model (SDSM). Comparison of the projection rainfall with historical rainfall shows a different trend at each station. Increasing trend occurred at four stations including Plosokerep, Pucanganom, Sopalan, and Talun stations, with the highest increasing trend occurring at Sopalan stations. In addition, there was also a decreasing trend that occurred at Ngandong station for both scenarios and at Sorasan station in the RCP8.5 scenario. The Jrakah and Randugunting stations show a steady trend.
STUDI PENGARUH PERUBAHAN TATAGUNA LAHAN TERHADAP KARAKTERISTIK BANJIR KOTA BIMA Ismoyojati, Goyu; Sujono, Joko; Jayadi, Rachmad
Jurnal Geografi Lingkungan Tropik (Journal of Geography of Tropical Environments) Vol. 2, No. 2
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The high intensity rainfall in December 21st 2016 has caused major flooding in Bima City. It caused infrastructure destructs and considerable losses. The condition of the watershed in the upstream experiencing decrease of forest area and the gorwth of the city were suspected as some of the factors causing the big flood. Significant land-use changing brought impact on the changes of watershed response to rainfall. The purpose of this research was to determine the effect of land use changing on the flood occurence based on the hydrological model of rainfall-flow in Rontu watershed in the City of Bima. In this research, the effect of land use changing was analyzed by determining the value of curve number (CN) of the watershed in 1996, 2006 and 2016. CN was calculated with the help of HEC-GeoHMS 10.3 software. Furthermore, CN value was used in effective rainfall calculation as the input of hydrograph flood simulation by using the Nakayasu synthetic unit hydrograph transform model. The result showed that other than extreme rainfall, the flood was also affected by the land use changing. In Rontu watershed, over the past twenty years (1996 to 2016), land use changing composition occured i e. 28,68% forest decrease, 3,10% settlement increase, 26,83% farm field incease, 5,82% shrubs decrease and 3,62% rice field increase. Such changing in wet conditions in Padolo sub-watershed resulted in increasing CN of 4,55%, peak discharge of 10,26% and runoff volume of 9,82% and in Malayu sub-watershed resulted in increasing CN of 6,78%, peak discharge of 17,29% and runoff volume 18,00%.
Analysis of Extreme Rainfall in the Mt. Merapi Area Anita Yuliana; Joko Sujono; Karlina
Journal of the Civil Engineering Forum Vol. 10 No. 1 (January 2024)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.10084

Abstract

The slopes of Mount Merapi (Mt. Merapi) are an area prone to hydrological disasters due to elevation and orography. Hydrological disasters that have the potential to occur include floods, erosion, landslides, and drought which are closely related to extreme rainfall. Spatial and temporal variability of rainfall in mountainous areas requires rainfall data that can represent rainfall events. Therefore, this research aims to obtain the reliability of satellite rainfall data in the extreme rainfall indices. The CHIRPS, GPM-IMERG FINAL (IMERG-F) and GPM-IMERG LATE (IMERG-L) will be used in the reliability analysis of satellite-based rainfall compared to observed rainfall station. To validate satellite rain data, statistical criteria are utilized with parameters such as Correlation Coefficient (R), Root Mean Squared Error (RMSE), and Relative Bias (RB). Satellite-based rainfall estimates have a weak to moderate correlation (0.19 – 0.55), the RMSE value is relatively good (12.18 – 31.35 mm) and the observed bias tends to underestimate the estimated values. The capabilities of the IMERG-F, IMERG-L and CHIRPS satellites as alternative rainfall data in the Mt. Merapi area are quite good where IMERG-L has the best performance in capturing rainfall above 50 mm (R50mm), Consecutive Dry Days (CDD) indices, max 1–day and 5-day precipitation (Rx1day and Rx5day). The potential for extreme rainfall that is most prone to trigger lava floods occurs in the western region of Mt. Merapi at Ngandong Station (Sta. Ngandong). In this region, there is a high occurrence of extreme rainfall events. For instance, there were 501 instances of R50mm with an intensity of 77 mm day-1, Total Precipitation (PRCPTOT) reaches 3385 mm, Rx5day reaches 393 mm, and Consecutive Wet Days (CWD) lasts for 30 days. The results of this analysis can assist in climate understanding and modeling of extreme rainfall relevant to the region and support water resource management and disaster risk mitigation.