Supari Muslim
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Study in the impact of quaternized graphene oxide (QGO) composition as modifier on the chemical, physical, mechanical, and performance properties of polyvinylidene fluoride (PVDF)-based nanocomposite membrane Ashabul Kahfi; Kusumawati, Nita; Setiarso, Pirim; Supari Muslim; Sinta Anjas Cahyani; Nafisatus Zakiyah
Communications in Science and Technology Vol 9 No 1 (2024)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.9.1.2024.1393

Abstract

Polyvinylidene Fluoride (PVDF) membranes were modified with quaternized graphene oxide (QGO) synthesized from graphene oxide and quaternized ammonium groups. PVDF/QGO membranes were created by blending PVDF and 0.01-0.05 g QGO via phase inversion. FTIR confirmed the successful QGO incorporation. PVDF/QGO membranes exhibited increased mechanical stiffness. Meanwhile, SEM revealed asymmetric morphology with surface and internal pores. AFM showed the membrane with 0.05 g and QGO had the highest surface roughness of 101.2 nm, which increased filtration area and flux. QGO improved hydrophilicity through hydroxyl and quaternary ammonium groups, enhancing water flux up to 1208 Lm?2h?1 for 0.05 g QGO. Cu2+ rejection increased to 75% for 0.05 g QGO membrane due to chelation and adsorption effects. PVDF/QGO membranes displayed bacterial growth inhibition, unlike pristine PVDF. The inhibition zone diameter increased with more QGO, indicating improved antibacterial activity. Overall, this study demonstrated that QGO improved PVDF membranes' hydrophilicity, antibacterial properties, and mechanical strength.
Effect of layered double hydroxide-graphene oxide modifier composition on characteristics of polyvinylidene fluoride based nanocomposite membranes in the separation of Cu2+ Kusumawati, Nita; Setiarso, Pirim; Supari Muslim; Sinta Anjas Cahyani; Nafisatus Zakiyah; Kahfi, Ashabul
Communications in Science and Technology Vol 9 No 1 (2024)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.9.1.2024.1440

Abstract

This research explored the modified polyvinylidene fluoride (PVDF) nanofiber membranes with a composite of layered double hydroxide (LDH) and graphene oxide (GO) to enhance biofouling resistance. The PVDF/LDH-GO nanocomposite membranes were synthesized via vacuum filtration. FTIR analysis confirmed nanocomposite formation with new peaks indicating the presence of GO and LDH. Variations in the LDH:GO ratio affected the physical, mechanical, and performance properties of the membranes. Based on SEM imaging, the 1:1 LDH: GO ratio exhibited the highest Young's modulus and smallest pore sizes. LDH-GO incorporation increased the mechanical strength, porosity, roughness, hydrophilicity, and pure water permeability of the PVDF membranes. The combination of these factors led to balanced permeability and selectivity values towards Cu2+ solution feeds. LDH-GO was proven effective in modifying the PVDF membrane surface for water treatment and inhibiting biofouling up to 64% against E. coli.