Claim Missing Document
Check
Articles

Found 3 Documents
Search

Penerapan Fuzzy Mamdani Max-Min Dalam Pengembangan Sistem Informasi Penentuan Gaji Pegawai Pada Sekolah Tinggi Teknik Poliprfesi Asprina Br Surbakti
Jurnal Eksplora Informatika Vol 3 No 2 (2014): Jurnal Eksplora Informatika
Publisher : Bagian Perpustakaan dan Publikasi Ilmiah - Institut Teknologi dan Bisnis STIKOM Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (268.901 KB)

Abstract

Gaji merupakan sesuatu yang penting bagi pegawai. Keputusan yang tepat dalam menentukan gaji adalah hal yang harus dilakukan oleh pimpinan. Baru pada langkah selanjutnya kita lakukan pengolahan data yang diawali dengan penentuan variable. Kemudian dilanjutkan dengan pembentukan himpunan fuzzy, dan dilakukan penegasan (defuzzy) sebagai langkah terakhir. Penegasan dilakukan dengan bantuan software Matlab Toolbox Fuzzy. Logika fuzzy merupakan salah satu metode untuk melakukan analisis sistem yang mengandung ketidakpastian. Pada penelitian ini digunakan metode mamdani. Dari hasil penelitian dengan menggunkaan metode Max-Min maka pegawai merasa lebih puas karena penetuan gaji memiliki krateria. Dari analisis yang telah dilakukan maka penentuan gaji pegawai menjadi lebih objektif dan efektif
Game Edukasi Untuk Anak TK Dan Dampak Penggunaan Android Di TK Bintang Timur P.Siantar Dewi Yohana Br Ginting; Raheliya Br Ginting; Meiliyani Br Ginting; Asprina Br Surbakti
MENGABDI : Jurnal Hasil Kegiatan Bersama Masyarakat Vol. 1 No. 5 (2023): Oktober : MENGABDI : Jurnal Hasil Kegiatan Bersama Masyarakat
Publisher : Asosiasi Riset Ekonomi dan Akuntansi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61132/mengabdi.v1i5.429

Abstract

Community service activities are carried out at Bintang Timur Kindergarten in Pematang Siantar in order to help children at an early age understand android educational games that are suitable for consumption by the child himself. Educational games as a support for children's cognitive development so that parents must understand various types of educational game applications, how to choose the right educational games, and how to install on cellphones. The implementation method used is presentation, demonstration, practice, brainstorming, and sharing about educational games to the Principal at Bintang Timur Kindergarten, Pematang Siantar.  This activity was carried out through three stages, namely 1) socialization, 2) mentoring, 3) monitoring and evaluation. The results of the implementation of this activity are:  1) understanding of android educational games as a support for children's cognitive development in the very good category.  This is indicated by the percentage of indicators of achievement of recognizing educational games (96%), choosing educational games (89%), installing educational games (93%), and implementing educational games (86%); 2) obtained a positive response as seen from the attendance indicator of participants reaching 93% of the target and enthusiastic participants during the activity from the beginning to the end of the activity. The ultimate goal of introducing educational games is that parents are IT literate so that they are able to monitor their children in using cellphones, especially when playing games.
Beyond Transformers: Evaluating the Robustness and Efficiency of State-Space Models for Next-Generation Natural Language Processing Saron Tua Parsaoran L Tobing; Muhammad Reza Al Thoriq; Setia Widodo; Sandre Ebenezer Sibuea; Asprina BR Surbakti; Siti Jamilah BR Tarigan
Jurnal Info Sains : Informatika dan Sains Vol. 15 No. 01 (2025): Informatika dan Sains , 2025
Publisher : SEAN Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Transformer architectures have dominated natural language processing (NLP) advancements in recent years, yet their growing computational demands and challenges in robustness motivate exploration of alternative models. This study qualitatively evaluates State-Space Models (SSMs) as a promising next-generation architecture for NLP tasks. By conducting a comprehensive literature analysis and comparative examination of current research, this paper investigates SSMs' theoretical foundations, robustness to input perturbations, efficiency in handling long sequences, and applicability to diverse linguistic contexts. The results show that SSMs offer compelling advantages over Transformers in memory efficiency and sequence modeling capacity, while demonstrating competitive or superior robustness in several NLP benchmarks, highlighting their potential as efficient, scalable, and robust alternatives for future NLP applications.