Faris Hermawan
Department Of Chemistry, Faculty Of Mathematics And Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia Austrian-Indonesian Centre (AIC) For Computational Chemistry, Department Of Chemistry, Faculty Of Mathematics And

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Computational Design of Thioxanthone Derivatives as Potential Antimalarial Agents through Plasmodium falciparum Protein Inhibition Faris Hermawan; Jumina Jumina; Harno Dwi Pranowo; Eti Nurwening Sholikhah; Muthia Rahayu Iresha
Indonesian Journal of Chemistry Vol 22, No 1 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.69448

Abstract

Plasmodium falciparum (P. falciparum) is the most fatal among the other Plasmodium parasites that infect humans with the malaria disease. Currently, the resistance of P. falciparum against some antifolate drugs has become a severe problem. On the other hand, xanthone and thioxanthone derivatives have been reported to have remarkable antimalarial activity. However, molecular docking studies have not evaluated thioxanthone derivative compounds as antimalarial agents. Accordingly, this research investigated the binding pose and inhibition mechanism of several thioxanthone derivatives against P. falciparum proteins DHFR (PDB ID: 1J3K) and DHODH (PDB ID: 1TV5) through molecular docking study. The compound structures were geometrically optimized using Gaussian 09 software and docked to the receptors using AutoDock4 software. The results showed that the free binding energy of thioxanthone derivatives ranged between -6.77 to -7.50 and -8.45 to -9.55 kcal mol–1 against pfDHFR and pfDHODH, respectively, with RMSD values of less than 2 Å. Compound F (4-iodo-3,4-dihydroxy-thioxanthone) gave the most substantial free binding energy against both proteins. Furthermore, the hydrogen bond interaction of compound F was the same as the native ligands of pfDHFR and pfDHODH. These results suggested that compound F has a more robust interaction in pfDHFR and pfDHODH. Thus, it is promising to further evaluate the compound as a candidate for a new antimalarial agent.
Synthesis, Cytotoxicity Evaluation and Molecular Docking Studies of Xanthyl-Cinnamate Derivatives as Potential Anticancer Agents Muthia Rahayu Iresha; Jumina Jumina; Harno Dwi Pranowo; Eti Nurwening Sholikhah; Faris Hermawan
Indonesian Journal of Chemistry Vol 22, No 5 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.76164

Abstract

A new series of xanthyl-cinnamate hybrid compounds (4a-d) have been synthesized and screened through in vitro assay against four human cancer cell lines, i.e., HeLa, T47D, A549, and WiDr. The results revealed that xanthone hybridization with cinnamic acid increases the selectivity of the compounds with SI values of 2.75–209.03 compared to its parent oxygenated-xanthone. Compound 1,3-dihydroxyxanthen-6-yl cinnamate (4c) showed high cytotoxic activity against WiDr cell lines with an IC50 value of 39.57 µM. Molecular docking studies revealed the possible binding modes of all hybrid compounds with EGFR protein. A complex of 3,6-dihydroxyxanthen-1-yl cinnamate (4d)-EGFR, as the best binding model, exhibited higher predicted EGFR inhibitory activity than erlotinib and oxygenated-xanthone with a ΔG and Ki value of -35.02 kJ/mol and 0.74 µM, respectively. Compounds 4c and 4d were chosen as the most potent derivates from the study.
Evaluation of Xanthone and Cinnamoylbenzene as Anticancer Agents for Breast Cancer Cell Lines through In Vitro and In Silico Assays Yehezkiel Steven Kurniawan; Hanif Amrulloh; Ervan Yudha; Nela Fatmasari; Faris Hermawan; Anggit Fitria; Harno Dwi Pranowo; Eti Nurwening Sholikhah; Jumina Jumina
Journal of Multidisciplinary Applied Natural Science Vol. 5 No. 1 (2025): Journal of Multidisciplinary Applied Natural Science
Publisher : Pandawa Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47352/jmans.2774-3047.231

Abstract

Breast cancer is a severe global disease for women as the number of deaths increases annually. Therefore, attempts to find new anticancer agents are critical and inevitable. In this work, we report the investigation on the anticancer activity of xanthone and cinnamoylbenzene compounds against two breast cancer cell lines, i.e., T47D and MCF-7, through experimental in vitro and theoretical in silico assays. Xanthone and cinnamoylbenzene exhibit anticancer activity with a half-maximal inhibitory concentration (IC50) of 136.7–194.3 and 235.8–262.4 µg/mL against T47D and MCF-7 cancer cells, respectively. Cinnamoylbenzene generates less cytotoxicity to normal Vero cells with a selectivity index of 1.095–2.102. The molecular docking studies agree with the experimental data in which cinnamoylbenzene is more active against T47D with an IC50 of 136.7 µg/mL due to Topoisomerase II inhibition through π-π stacked interactions with Adenine12 and Guanine13 nitrogen bases. Meanwhile, xanthone is more active against MCF-7 with an IC50 of 235.8 µg/mL due to EGFR inhibition through van der Waals interaction and hydrogen bond with Glutamic acid767 and Methionine769 amino acid residues, respectively. Additionally, the pharmacokinetic parameters of xanthone and cinnamoylbenzene are predicted through absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis, and they show better suitability than doxorubicin as the commercial anticancer drug.