Claim Missing Document
Check
Articles

Found 4 Documents
Search

Codoping of Nickel and Nitrogen in ZrO2-TiO2 Composite as Photocatalyst for Methylene Blue Degradation under Visible Light Irradiation Syoufian, Akhmad; Kurniawan, Rian
Indonesian Journal of Chemistry Vol 24, No 4 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.90151

Abstract

Nickel (Ni) and nitrogen (N) as codopants had been introduced into ZrO2-TiO2 composite photocatalyst. The objectives of this study are to investigate the codoping effect of Ni and N, as well as the calcination temperature towards the ability to photodegrade methylene blue (MB) under the irradiation of visible light. Different amounts of Ni dopant (wNi/wTi = 2–10%) along with a fixed amount of N dopant (wN/wTi = 10%) were applied to the ZrO2-TiO2 composite through the sol-gel method. Crystallization of the composite was done by calcination at 500, 700, and 900 °C. Characterization of the composite was done using Fourier-transform infrared spectrophotometer (FTIR), X-ray diffractometer (XRD), specular reflectance UV-visible spectrophotometer (SR-UV) and scanning electron microscopy equipped with energy dispersive X-ray spectrometer (SEM-EDX). The photocatalytic activity of the composite was evaluated by photodegradation of 4 mg L−1 MB solution under visible light irradiation at various reaction times. The lowest band gap was achieved until 2.79 eV by the composite with 6% Ni and 10% N calcined at 900 °C. The highest MB degradation percentage up to 61% was obtained by the composite with 6% Ni and 10% N calcined at 500 °C (kobs = 7.8 × 10−3 min−1).
Fixing cobalt metal onto mordenite through spray impregnation and its evaluation as a catalyst in transforming used coconut cooking oil into bio-jet fuel Saviola, Aldino Javier; Wijaya, Karna; Syoufian, Akhmad; Vebryana, Marini Fairuz; Anggraeni, Widuri; Rozana, Kharistya; Darsono, Nono; Saputra, Dita Adi; Saputri, Wahyu Dita
Communications in Science and Technology Vol 9 No 2 (2024)
Publisher : Komunitas Ilmuwan dan Profesional Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21924/cst.9.2.2024.1535

Abstract

Given the challenges posed by fossil-based jet fuel, research into bio-jet fuel production has intensified to achieve carbon neutrality. The present work reports a significant breakthrough with the successful conversion of used coconut cooking oil into bio-jet fuel utilizing a cobalt-impregnated mordenite catalyst. Cobalt was introduced to mordenite via the spray impregnation method at a concentration of 2% using a CoCl?·6H?O solution. The resultant catalyst was characterized using FTIR, XRD, NH?-TPD, SAA, FESEM-EDX Mapping, TEM, XPS, and TG/DTA instruments. Hydrotreatment was conducted in a semi-batch reactor at atmospheric pressure, employing H? gas at a flow rate of 20 mL/min and a catalyst-to-feed ratio of 1:200 (w/w) for a duration of 2 h. The addition of cobalt significantly enhanced the efficiency of the hydrotreatment by improving the catalytic performance of mordenite as a support material. The liquid product conversion and total bio-jet fuel yield obtained from the hydrotreatment of used coconut cooking oil using the Co/mordenite catalyst were 60.25% and 51.11%, respectively. The highest selectivity for bio-jet fuel was observed in fraction II (450–550 °C) at 88.90%. This catalyst exhibited sustained performance over three consecutive runs, indicating its potential application in the future biofuel industry. Altogether, this research reveals the possibility of employing used coconut cooking oil as a sustainable and promising feedstock to be converted into bio-jet fuel by hydrodeoxygenation and/or hydrocracking reactions.
Enhanced Photocatalytic Activity and Magnetic Properties of CoFe2O4/TiO2-Ag/S for Visible Light-Driven Photodegradation of Methylene Blue Kunarti, Eko Sri; Agustiningsih, Dewi; Pambudi, Fajar Inggit; Syoufian, Akhmad; Santosa, Sri Juari
Indonesian Journal of Chemistry Vol 25, No 1 (2025)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.100142

Abstract

Environmental concerns drive the need for effective photocatalysts that can operate under visible light to degrade organic pollutants in wastewater. This study investigated TiO2-based photocatalyst doped with Ag and S to enhance its visible-light response, modified further with CoFe2O4 to introduce magnetic properties, resulting in a composite, CoFe2O4/TiO2-Ag/S. The synthesis was carried out by using cobalt nitrate hexahydrate and ferric nitrate nonahydrate for CoFe2O4 precursor, titanium tetraisopropoxide for TiO2 precursor, and silver nitrate with thiourea for Ag and S dopants. Results from characterization analyses, including FTIR, XRD, UV-vis, SEM-EDX, TEM, and VSM, confirmed the composite structure, with magnetic properties reflected in saturation magnetization of 10.69 emu g−1 and an extended UV-vis absorption edge indicating improved visible light activity. Photocatalytic tests for methylene blue degradation showed the highest performance (92%) with a 1:1 Ag:S ratio under visible light at pH 10 over 120 min, using 20 mg of catalyst in 5 ppm solution. Additionally, the composite demonstrated strong stability, retaining efficiency across six cycles of reuse.
Synthesis of Zinc-Nitrogen-Codoped Zirco-Titania Composite (Zn-N-Codoped ZT) as a Photocatalyst for Photodegradation of Phenol Under Visible Light Irradiation Utami, Nadya Putri; Kurniawan, Rian; Pradipta, Mokhammad Fajar; Syoufian, Akhmad
Indonesian Journal of Chemistry Vol 25, No 4 (2025)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.101519

Abstract

Zinc (Zn) and nitrogen (N) were introduced as codopants in zirco-titania (Zn-N-codoped ZT) composite photocatalyst. This research primarily aimed to investigate the codoping effect of Zn and N in ZT composite for the photodegradation of phenol under visible light irradiation. The composite was prepared through the sol-gel method, where a suspension of ZrO2 mixed with Zn dopant (wZn/wTi = 1–9%) and N dopant (wN/wTi = 10%) was added dropwise to TTIP in ethanol solution. Calcination was conducted at the temperature of 500, 700, and 900 °C. FTIR shows an increasing absorbance at 1095 cm−1 as the increasing Zn up to 5%. XRD reveals that Zn-N cooping influences anatase and rutile crystallization above 700 °C. SEM-EDX of 5Zn-N-ZT-500 displays a spherical and homogeneous morphology. Photodegradation of 10 mg L−1 phenol solution under visible light irradiation was conducted to evaluate the photocatalytic activity. The composite with 5% Zn and 10% N calcined at 900 °C achieved the lowest band gap of 2.90 eV. The highest phenol degradation percentage after 120 min irradiation, 51.96%, was attained by the composite containing 5% Ni and 10% N calcined at 500 °C (kobs = 8.4 × 10−3 min−1).