Robinson Jimenez-Moreno
Universidad Militar Nueva Granada

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Ambulance detection for smart traffic light applications with fuzzy controller Robinson Jimenez-Moreno; Javier Eduardo Martinez Baquero; Luis Alfredo Rodriguez Umaña
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 5: October 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i5.pp4876-4882

Abstract

In the development of intelligent cities, the automation of vehicular mobility is one of the strong points of research, where intelligent traffic lights stand out. It is essential in this field to prioritize emergency vehicles that can help save lives, where every second counts in favor of the transfer of a patient or injured person. This paper presents an artificial intelligence algorithm based on two stages, one is the recognition of emergency vehicles through a ResNet-50 and the other is a fuzzy inference system for timing control of a traffic light, both lead to an intelligent traffic light. An application of traffic light vehicular flow control for automatic preemption when detecting emergency vehicles, specifically ambulances, is oriented. The training parameters of the network, which achieves 100% accuracy with confidence levels between 65% with vehicle occlusion and 99% in direct view, are presented. The traffic light cycles are able to extend the green time of the traffic light with almost 50% in favor of the road that must yield the priority, in relation to not using the fuzzy inference system.
Paper biological risk detection through deep learning and fuzzy system Juan Sebastian Sanabria; Robinson Jimenez-Moreno; Javier Eduardo Martinez Baquero
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 1: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i1.pp249-257

Abstract

Given the recent events worldwide due to viral diseases that affect human health, automatic monitoring systems are one of the strong points of research that has gained strength, where the detection of biohazardous waste of a sanitary nature is highlighted related to viral diseases stands out. It is essential in this field to generate developments aimed at saving lives, where robotic systems can operate as assistants in various fields. In this work an artificial intelligence algorithm based on two stages is presented, one is the recognition of paper debris using a ResNet-50, chosen for its object localization capacity, and the other is a fuzzy inference system for the generation of alarm states due to biological risk by such debris, where fuzzy logic helps to establish a model for a non-predictive system as the one exposed. A biohazard detection algorithm for paper waste is described, oriented to operate on an assistive robot in a residential environment. The training parameters of the network, which achieve 100% accuracy with confidence levels between 82% for very small waste and 100% in direct view, are presented. Timing cycles are established for validation of the exposure time of the waste, where through the fuzzy system, risk alarms are generated, which allows establishing a system with an average reliability of 98%.