Claim Missing Document
Check
Articles

Found 15 Documents
Search
Journal : MIND (Multimedia Artificial Intelligent Networking Database) Journal

Perbandingan Metode Breadth First Search dan Backlink pada Web Crawler Jasman Pardede; Asep Nana Hermana; Galih Swarghani
MIND (Multimedia Artificial Intelligent Networking Database) Journal Vol 2, No 2 (2017): MIND Journal
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/mindjournal.v2i2.61-69

Abstract

Dalam sebuah search engine terdapat beberapa komponen penting yang salah satunya adalah crawler / web crawler. Crawler adalah sebuah komponen dalam search engine yang berfungsi untuk mencari semua link pada setiap halaman dimana hasil pengumpulan alamat web selanjutnya akan diindeks. Crawler bekerja dengan menggunakan algoritma pencarian yang beragam, diantaranya adalah Breadth First Search dan Backlink. Breadth first search merupakan algoritma untuk melakukan pencarian secara berurutan dengan mengunjungi setiap simpul secara preorder. Backlink memanfaatkan tautan yang berada disitus lain dan mengarah ke situs tertentu. Adapun hasil dari uji aplikasi yaitu dengan membandingkan kedua metode tersebut dengan cara melihat performa pengambilan URL terbanyak pada Detik.com dan Kompas.com. Metode breadth first search secara performa lebih baik dibandingkan dengan metode backlink, dalam pengujian crawling, perbedaan jumlah url mencapai 25,17 pada website detik.com dan 28,94% pada website Kompas.com.
Implementasi Ontology Pada Web Crawler Jasman Pardede; Uung Ungkawa; Muhammad Akbar Bernovaldy
MIND (Multimedia Artificial Intelligent Networking Database) Journal Vol 1, No 2 (2016): MIND Journal
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/mindjournal.v1i2.76-84

Abstract

Web crawler adalah suatu program atau script otomatis yang bekerja dengan memprioritaskan ketentuan khusus untuk melakukan penjelajahan dan melakukan pengambilan informasi dalam halaman web yang ada di internet. Proses pengindeksan merupakan proses crawler yang memudahkan setiap orang dalam pencarian informasi Pada proses indexing tersebut dibangun dengan menggunakan metode ontology. Metode ontology merupakan sebuah teori tentang makna dari suatu objek dengan hubungan objek tersebut. Pada penelitian ini, metode ontology diterapkan dalam proses pengambilan data dan pengelompokkan data. Metode ontology memiliki proses, yaitu melakukan splitting terhadap objek dengan ketentuan relasi untuk mendapatkan sebuah objek ontology. Selanjutnya dilakukan crawling terhadap objek ontology tersebut untuk mendapatkan hasil crawling dengan ontology. Pengelompokkan data diproses berdasarkan objek yang telah didapat berdasarkan relasi ontology. Dari hasil penelitian dapat diambil kesimpulan, yaitu presentase objek relasi sesuai dengan relasinya adalah 100% dan kecepatan web crawler dengan ontology lebih cepat 56,67% dibanding dengan web crawler biasa.
House Prices Prediction : Multiple Linear Regression vs Ridge vs Polynomial JASMAN PARDEDE; RAYYAN RAYYAN
MIND (Multimedia Artificial Intelligent Networking Database) Journal Vol 8, No 1 (2023): MIND Journal
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/mindjournal.v8i1.14-26

Abstract

AbstractThe phenomenon of falling or rising house prices has attracted the interest of researchers as well as many other interested parties. The house not only be used as a place to live, it is also used as an investment instrument. Errors in determining the price of the house can result in losses. However, with data from developers, machine learning models can be applied for price predictive analysis. Several methods are used such as multiple linear regression, ridge, and polynomial. Model performance was measured using evaluation matrices such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and also Mean Absolute Error (MAE). Multiple linear regression models yielding values of 0.0952, 0.3086, 0.2452, ridge yielding values of 0.0952, 0.3086, 0.2453, and polynomial yielding values of 0.0874, 0.2955, 0.2344. These results prove that the polynomial regression model with a value of degree = 2, coupled with a regularization technique using ridge regression with a value of Alpha = 100 can produces the best performance judging from the value of the error matrix it produces, the model will also be used to predict house prices in a web-based applications.Keywords: Multiple Linear Regression, Ridge Regression, Polynomial RegressionAbstrakFenomena turun atau naiknya harga rumah telah menarik minat dari peneliti juga banyak pihak lain yang berkepentingan. Rumah tidak hanya dijadikan sebagai tempat tinggal, rumah juga digunakan sebagai instrumen investasi. Kesalahan menentukan harga rumah dapat mengakibatkan kerugian. Namun, dengan adanya data – data dari pengembang, pembuatan model machine learning dapat diaplikasikan guna keperluan analisis prediktif harga. Beberapa metode yang digunakan seperti regresi linear berganda, ridge, dan polinomial. Performa model diukur menggunakan matriks evaluasi seperti Mean Squared Error (MSE), Root Mean Squared Error (RMSE), dan juga Mean Absolute Error (MAE). Model regresi linear berganda menghasilkan nilai 0.0952, 0.3086, 0.2452, ridge menghasilkan nilai 0.0952, 0.3086, 0.2453, dan polinomial menghasilkan nilai 0.0874, 0.2955, 0.2344. Hasil tersebut membuktikan bahwa model regresi polinomial dengan nilai degree = 2, ditambah dengan teknik regularisasi regresi ridge dengan nilai Alpha = 100 dapat menghasilkan performansi terbaik dilhat dari nilai matriks error yang dihasilkannya, model tersebut juga akan digunakan untuk melakukan prediksi harga rumah pada aplikasi yang berbasis website.Kata kunci: Regresi Linear Berganda, Regresi Ridge, Regresi Polinomial 
Implementasi ShuffleNet V2 Pada Klasifikasi Penyakit Kulit Benign dan Malignant JASMAN PARDEDE; MUHAMMAD RIFALDI BADU
MIND (Multimedia Artificial Intelligent Networking Database) Journal Vol 8, No 1 (2023): MIND Journal
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/mindjournal.v8i1.65-76

Abstract

ABSTRAKPenyakit kulit atau kanker kulit disebabkan oleh adanya pertumbuhan abnormal sel kulit. Kanker kulit dapat diklasifikasikan menjadi dua kategori yaitu tumor kulit benign (jinak) atau malignant (tumor ganas) dengan karakteristik yang hampir sama. Beberapa metode telah dilakukan untuk membantu deteksi penyakit kulit salah satunya menggunakan computer vision. Pada penelitian ini, dirancang sebuah sistem yang dapat mengklasifikasi penyakit kulit benign dan malignant pada citra dermoskopi dengan menggunakan arsitektur ShuffleNet V2.  Eksperimen dilakukan menggunakan 5 varian model ShuffleNet V2 berbeda dengan hyperparameter yaitu optimizer adam, learning rate 0.0001, batch size 16 dan epoch 40.  Penelitian ini menunjukkan bahwa model ShuffleNetV2_1.0_1_373 menunjukkan performa terbaik dibandingkan dengan  varian model lainnya berdasarkan hasil evaluasi accuracy, precision, recall dan  f1-score dengan mencapai skor masing-masing sebesar 87,2%, 87,5%, 87,0%, dan 87,2%.Kata kunci: CNN, Lightweight CNN, ShuffleNet V2, Kanker Kulit, benign, malignantABSTRACTSkin disease, or skin cancer, is caused by the abnormal growth of skin cells. Skin cancer can be classified into two categories, namely benign (benign) or malignant (malignant tumor) skin tumors, with almost the same characteristics. With it, early detection and accurate diagnosis are needed to help identify benign and malignant skin cancer. Several methods have been developed to aid in the detection of skin diseases, one of which is the use of computer vision. In this study, a system was designed that could classify skin diseases on dermoscopy images using the ShuffleNet V2 architecture. In the experimental results, 5 variants of the ShuffleNet V2 model were tested using hyperparameters such as adam optimizer with a learning rate of 0.0001, batch size of 16, and epoch 40. The model with the best performance based on the evaluation results was the ShuffleNetV2_1.0_1_373 model, which obtained 87.2% accuracy, 87.5% precision, 87.0% recalls, and an 87.2% F1 score.Keywords: CNN, Lightweight CNN, ShuffleNet V2, Skin Cancer, benign, malignant
Pendekatan Augmentasi Citra Fundus pada Model EfficientNet untuk Klasifikasi Tingkat Keparahan Retinopati Diabetik dengan Dataset Tidak Seimbang CHAZAR, CHALIFA; ADLI, MUHAMMAD ARKAN; PARDEDE, JASMAN; ICHWAN, MUHAMMAD
MIND (Multimedia Artificial Intelligent Networking Database) Journal Vol 10, No 2 (2025): MIND Journal
Publisher : Institut Teknologi Nasional Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/mindjournal.v10i2.180-194

Abstract

AbstrakRetinopati diabetik (RD) adalah komplikasi diabetes mellitus yang menyerang pembuluh darah retina dan berpotensi menyebabkan kebutaan jika tidak terdeteksi dini. Citra fundus retina berperan penting dalam mendeteksi serta mengklasifikasikan tingkat keparahan RD karena mampu menampilkan kelainan secara jelas. Tantangan utama dalam klasifikasi RD adalah ketidakseimbangan data antar kelas. Penelitian ini mengusulkan penggunaan EfficientNet-B0 dengan augmentasi gambar terarah pada dataset APTOS 2019. Hasil evaluasi menunjukkan peningkatan akurasi dari 73,84% menjadi 82,56% serta F1-score 0,8241. Peningkatan signifikan terlihat pada kelas minoritas, misalnya Mild dari 0,1429 menjadi 0,65 dan Severe dari 0,087 menjadi 0,4211. Temuan ini membuktikan bahwa augmentasi terarah efektif dalam mengurangi bias kelas mayoritas dan meningkatkan keandalan model.Kata kunci: augmentasi, EfficientNet, ketidakseimbangan kelas, retinopati diabetikAbstractDiabetic retinopathy (DR) is a complication of diabetes mellitus that affects the retinal blood vessels and may lead to blindness if not detected early. Fundus images play a crucial role in detecting and classifying the severity of DR as they clearly reveal pathological abnormalities. The main challenge in DR classification lies in the imbalance across severity classes. This study proposes the use of EfficientNet-B0 combined with targeted image augmentation on the APTOS 2019 dataset. The evaluation results show an improvement in accuracy from 73.84% to 82.56% and a F1-score of 0.8241. Significant gains are observed in minority classes, such as Mild (from 0.1429 to 0.65) and Severe (from 0.087 to 0.4211). These findings demonstrate that targeted augmentation is effective in reducing majority-class bias and improving model reliability.Keywords: class imbalance, data augmentation, diabetic retinopathy, EfficientNet