Claim Missing Document
Check
Articles

Found 16 Documents
Search

Perbandingan Titer Antibodi Newcastle Disease pada Ayam Petelur Fase Layer I dan II Akbar, Saiful; Ardana, Ida Bagus Komang; Suardana, Ida Bagus Kade
Indonesia Medicus Veterinus Vol 6 (4) 2017
Publisher : Faculty of Veterinary Medicine, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (191.672 KB)

Abstract

Penelitian ini bertujuan untuk mengetahui titer antibodi terhadap penyakit Newcastle Disease (ND) pada ayam petelur fase layer I dan fase layer II pasca vaksinasi ND. Sampel penelitian ini adalah serum yang diambil dari tujuh peternakan pada lima desa di Kecamatan Penebel yaitu Desa Mangesta, Senganan, Babahan, Penebel, dan Jatiluwih. Total sampel adalah 131 sampel terdiri dari 78 sampel fase layer I dan 53 sampel fase layer II. Pengukuran titer antibodi ND dilakukan dengan uji Haemagglutination Inhibition (HI), kemudian hasilnya dianalisis secara statistik menggunakan Chi-square (X2) dan tabel kontingensi 2x2. Hasil penelitian ini menunjukkan vaksinasi ND pada ayam petelur fase layer I dan II di Kecamatan Penebel menunjukkan respon kebal yang protektif (99,24%) dengan nilai Geometric Mean Titre (GMT) 8,52. Kekebalan pada ayam petelur fase layer I (GMT 8,91) lebih besar daripada fase layer II (8,13). Namun, secara statistik kekebalan protektif pada ayam petelur fase layer I dan fase layer II tidak berbeda nyata (p>0,05). Analisis data menggunakan tabel kontingensi 2x2 menunjukkan nilai Odds Ratio (OR) adalah 0, ini berarti faktor tersebut adalah protektif.
Enhancing Performance in Medical Articles Summarization with Multi-Feature Selection Susetyo Bagas Bhaskoro; Saiful Akbar; Suhono Harso Supangkat
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 4: August 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (600.487 KB) | DOI: 10.11591/ijece.v8i4.pp2299-2309

Abstract

The research aimed at providing an outcome summary of extraordinary events information for public health surveillance systems based on the extraction of online medical articles. The data set used is 7,346 pieces. Characteristics possessed by online medical articles include paragraphs that comprise more than one and the core location of the story or important sentences scattered at the beginning, middle and end of a paragraph. Therefore, this study conducted a summary by maintaining important phrases related to the information of extraordinary events scattered in every paragraph in the medical article online. The summary method used is maximal marginal relevance with an n-best value of 0.7. While the multi feature selection in question is the use of features to improve the performance of the summary system. The first feature selection is the use of title and statistic number of word and noun occurrence, and weighting tf-idf. In addition, other features are word level category in medical content patterns to identify important sentences of each paragraph in the online medical article. The important sentences defined in this study are classified into three categories: core sentence, explanatory sentence, and supporting sentence. The system test in this study was divided into two categories, such as extrinsic and intrinsic test. Extrinsic test is comparing the summary results of the decisions made by the experts with the output resulting from the system. While intrinsic test compared three n-Best weighting value method, feature selection combination, and combined feature selection combination with word level category in medical content. The extrinsic evaluation result was 72%. While intrinsic evaluation result of feature selection combination merger method with word category in medical content was 91,6% for precision, 92,6% for recall and f-measure was 92,2%.
A New Strategy of Direct Access for Speaker Identification System Based on Classification Hery Heryanto; Saiful Akbar; Benhard Sitohang
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 13, No 4: December 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v13i4.2017

Abstract

In this paper, we present a new direct access strategy for speaker identification system. DAMClass is a method for direct access strategy that speeds up the identification process without decreasing the identification rate drastically. This proposed method uses speaker classification strategy based on human voice’s original characteristics, such as pitch, flatness, brightness, and roll off. DAMClass decomposes available dataset into smaller sub-datasets in the form of classes or buckets based on the similarity of speaker’s original characteristics. DAMClass builds speaker dataset index based on range-based indexing of direct access facility and uses Nearest Neighbor Search, Range-Based Searching, and Multiclass-SVM Mapping as its access method. Experiments show that the direct access strategy with Multiclass-SVM algorithm outperforms the indexing accuracy of Range-Based Indexing and Nearest Neighbor for one to nine percent. DAMClass is shown to speed up the identification process 16 times faster than sequential access method with 91.05% indexing accuracy.
Minimizing the Estimated Solution Cost with A* Search to Support Minimal Mapping Repair Inne Gartina Husein; Benhard Sitohang; Saiful Akbar
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 4: EECSI 2017
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1322.664 KB) | DOI: 10.11591/eecsi.v4.1080

Abstract

Incoherent alignment has been the main focus in the matching process since 2010.  Incoherent means that there is semantic or logic conflict in the alignment. This condition encouraged researches in ontology matching field to improve the alignment by repairing the incoherent alignment. Repair mapping will restore the incoherent to coherent mapping, by deleting unwanted mappings from the alignment. In order to minimize the impacts in the input alignment, repair process should be done as as minimal as possible. Definition of minimal could be (1) reducing the number of deleted mappings, or (2) reducing the total amount of deleted mappings’ confidence values. Repair process with new global technique conducted the repair with both minimal definitions. This technique could reduce the number of deleted mappings and total amount of confidence values at the same time. We proposed A * Search method to implement new global technique. This search method was capable to search the shortest path which representing the fewest number of deleted mappings, and also search the cheapest cost which representing the smallest total amount of deleted mappings’ confidence value. A* Search was both complete and optimal to minimize mapping repair size.
Automatic Grading System for Spreadsheet Formula Kurniandha Sukma Yunastrian; Saiful Akbar; Fitra Arifiansyah
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 7, No 1: EECSI 2020
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eecsi.v7.2086

Abstract

Spreadsheet is one of the tools that can be used to learn data analysis. Data analysis in spreadsheet can be done using formula. Spreadsheet tools can also be used for exams. For the assessment, there is a problem when the number of answers that need to be checked is large, that is it takes a long time to check all the answers. For this reason, an automatic grading system (autograder) that can evaluate formula in spreadsheet is needed. The method used in developing the autograder system is matching the answer key formula with the student's answer formula. The autograder system assesses the answer by calculating the similarity of the student's answer formula with the answer key formula. This paper explains how to build an autograder system that can evaluate the formula. At the end, an autograder system has been built successfully. It has been tested with 43 testcases and all of them are passed.
Identifikasi Hubungan Sebab-Akibat pada Artikel Kesehatan menggunakan Anotasi Elemen Medis dan Paragraf Susetyo Bagas Bhaskoro; Saiful Akbar; Suhono Harso Supangkat
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 8 No 2: Mei 2019
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (936.485 KB)

Abstract

This paper studies natural language processing on medical articles in Indonesian that aims to identify causal relationship and used as public health surveillance information monitoring system. This paper proposes selection-feature conformity, phrase annotation, paragraph annotation, and medical element annotation. System performance evaluation is carried out using intrinsic aprroach which compares supervised classification methods, i.e. naive bayes method and HMM. Results obtained for recall, precission, and f-measure are 0.905, 0.924, 0.910 and 0.706, 0.750, 0.720, respectively.
SOSIALISASI PENTINGNYA PENDIDIKAN DI SMK IBRAHIMY SITUBONDO Rofek, Aenor; Akbar, Saiful
MIMBAR INTEGRITAS : Jurnal Pengabdian Vol 3 No 1 (2024): JANUARI 2024
Publisher : Biro Administrasi dan Akademik

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36841/mimbarintegritas.v3i1.3919

Abstract

SMK Ibrahimy merupakan sekolah yang memiliki jumlah siswa cukup banyak dengan memiliki empat jurusan, dimana siswa-siswi SMK Ibrahimy memiliki kemauan dan kemampuan dalam melanjutkan study, akan tetapi masih banyak siswa yang masih belum menemukan kemauan untuk study lanjut. Pendidikan merupakan hal yang terpenting dalam kehidupan manusia, ini berarti bahwa setiap manusia Indonesia berhak mendapatkannya dan diharapkan untuk selalu berkembang didalamnya, Pendidikan tidak akan ada habisnya, Pendidikan secara umum mempunyai arti suatu proses kehidupan dalam mengembangkan diri tiap individu untuk dapat hidup dan melangsungkan kehidupan. Sehingga menjadi seorang yang terdidik itu sangat penting. Manusia dididik menjadi orang yang berguna baik bagi Negara,Nusa dan Bangsa. Sosialisasi pentingnya pendidikan di SMK Ibrahimy dilakukan selama satu hari, dimana pemateri yaitu Aenor Rofek, M.Pd dan Syaiful Akbar, S.E, M.Si melaksakan sosialisasi bagi siswa-siswi kelas X sampai dengan kelasi XII di ruang kelas di SMK Ibrahimy. Kegiatan ini dilaksanakan setelah libur UAS. Adapun kurang lebih 50 siswa mengkiuti sosialisasi dan mereka sangat menikmati acara tersebut, ada banyak siswa yang semakin termotivasi untuk melanjutkan study ketika tim pengabdian masyrakat oleh tim dosen UNARS yakni Aenor Rofek, M.Pd dan Syaiful Akbar, S.E, M.Si melaksanakan pengabdian terjadi perubahan sikap untuk para siswa memilih study lanjut ke jenjang perguruan tinggi.
PELATIHAN PEMBUATAN SABUN LIDAH BUAYA (ALOE VERA) SEBAGAI ANTISEPTIK RAMAH LINGKUNGAN DAN BERNILAI EKONOMIS Elhany, Nurul Avidhah; Ibnu Fajar, Muhammad Thoifur; Prawita Rani, Dewi Eka; Santi, Risan Nur; Akbar, Saiful; Qomariyah, Rofi’atul; Mulyasari, Dinda
MIMBAR INTEGRITAS : Jurnal Pengabdian Vol 3 No 2 (2024): AGUSTUS 2024
Publisher : Biro Administrasi dan Akademik

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36841/mimbarintegritas.v3i2.4869

Abstract

Lidah buaya (Aloe vera) merupakan salah satu tanaman yang banyak dibudidayakan oleh masyarakat. Pengolahan sabun berbahan dasar lidah buaya merupakan salah satu cara untuk mengurangi penggunaan sabun berbahan dasar kimia yang dapat mencemari lingkungan. Tujuan dari program pengabdian masyarakat ini adalah untuk memberikan keterampilan terhadap generasi muda untuk mengolah sabun berbahan dasar lidah buaya yang ramah lingkungan dan bernilai ekonomis. Kegiatan pengabdian masyarakat ini dilakukan dalam bentuk pendampingan dan juga pelatihan. Peserta kegiatan diberikan pelatihan dan demo secara langsung untuk membuat sabun. Dari kegiatan ini, diharapkan generasi muda mampu membuat sabun lidah buaya sebagai salah satu produk ramah lingkungan dan bernilai ekonomis.
PENGENALAN MEDIA FUN THINKERS UNTUK BELAJAR MATEMATIKA YANG MUDAH MENYENANGKAN Santi, Risan Nur; Untari, Wiwik Sri; Akbar, Saiful; Ikbal, Mohammad
MIMBAR INTEGRITAS : Jurnal Pengabdian Vol 4 No 1 (2025): JANUARI 2025
Publisher : Biro Administrasi dan Akademik

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36841/mimbarintegritas.v4i1.5764

Abstract

Matematika merupakan ilmu yang sangat penting untuk semua kalangan. Rasa cinta terhadap matematika sebaiknya ditanamkan sejak dini, sehingga dapat meminimalisir anggapan bahwa matematika merupakan pelajaran yang sulit dan membosankan. Kegiatan ini bertujuan untuk memperbaiki dan menumbuhkan kembali rasa cinta remaja terhadap matematika. Penggunaan media fun thinkers membuat aktivitas dalam belajar matematika menjadi mudah dan menyenangkan sehingga pembelajaran dapat berjalan dengan baik. Pengabdian kepada masyarakat ini dilaksanakan di RT 01 RW 02 Kelurahan Kebonagung Kecamatan Kaliwates Kabupaten Jember. Pada pelaksanaan kegiatan ini, setiap anak diperkenalkan dan berlatih menerapkan media fun thinkers dalam menyelesaikan soal-soal matematika.
IDCCD: evaluation of deep learning for early detection caries based on ICDAS Noer Fadilah, Rina Putri; Rikmasari, Rasmi; Akbar, Saiful; Setiawan, Arlette Suzy
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 1: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i1.pp381-392

Abstract

Dental caries is a common oral disease in children, influenced by environmental, psychological, behavioral, and biological factors. The American academy of pediatric dentistry recommends screening from the time the first tooth erupts or at one year of age to prevent caries, which mostly affects children from racial and ethnic minorities. In Indonesia, the 2023 health survey reported a caries prevalence of 84.8% in children aged 5-9 years. This research introduces early caries detection using three deep learning models: faster-RCNN, you only look once (YOLO) V8, and detection transformer (DETR), using Indonesian dental caries characteristic datasets (IDCCD) focused on Indonesian data with international caries detection and assessment system (ICDAS) classification D0 to D6. The results showed that YOLO V8-s and DETR gave good results, with mean average precision (mAP) of 41.8% and 41.3% for intersection over union (IoU) 50, and 24.3% and 26.2% for IoU 50:90. Precision-recall (PR) curves show that both models have high precision at low recall (0 to 0.2), but precision decreases sharply as recall increases. YOLO V8-s showed a slower and more regular decrease in precision, indicating a more stable performance compared to DETR.