Nurhamzah Nurhamzah
Jurusan Matematika, Fakultas MIPA, Universitas Tanjungpura, Jl. Prof. Dr. Hadari Nawawi, Kota Pontianak 78124, Kalimantan Barat

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Bilangan Invers Dominasi Total Pada Triangular Snake Graph, Line Triangular Snake Graph, dan Shadow Triangular Snake Graph Nurhamzah Nurhamzah; Nilamsari Kusumastuti; Fransiskus Fran
Jambura Journal of Mathematics Vol 4, No 2: July 2022
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1472.398 KB) | DOI: 10.34312/jjom.v4i2.14176

Abstract

Let G = (V(G), E(G)) be a connected graph, where V(G) is the set of vertices and E(G) is the set of edges. The set Dt(G) is called the total domination set in G if every vertex v 2 V(G) is adjacent to at least one vertex in Dt (G). Furthermore, Dt(G) must satisfy the property N(Dt ) = V(G), where N(Dt) is an open neighbourhood set of Dt(G). Suppose that Dt(G) is the total domination set with minimum cardinality. If V(G) - Dt(G) contains a total domination set Dt-1(G), then Dt-1(G) is the inverse set of total domination relative to the total domination set Dt (G). The inverse’s number of the total domination set denotes the minimum cardinality of the inverse set of total domination. This number is denoted by gt-1 (G). This article discusses the inverse’s number of total domination of the triangular snake graph (Tn), line triangular snake graph (L (Tn)), and shadow triangular snake graph (D2 (Tn)). Graph Tn is a graph obtained from the path graph (Pn) by replacing each side of the path with a cycle graph (C3). Graph L (Tn) is a graph where the vertex set in L(Tn) is the edge set on Tn, or V(L(Tn)) = E(Tn). Graph D2 (Tn) is a graph obtained by combining two copies of a graph Tn, namely Tn0 and T00n. This research shows that the graph Tn does not have an inverse of domination total, gt-1 (L (Tn)) = n for n = 4, 6, 8, gt-1 (L (Tn)) = n - 1 for n = 3, 5, 7, or n ≥ 9 with n 2 N, and gt-1 (D2 (Tn)) = b23nc for n ≥ 3 with n 2 N.