Fatimah Defina Setiti Alhamdani
Universitas Muhammadiyah Malang

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Prediksi Harga Emas Menggunakan Metode Time Series Long Short - Term Memory Neural Network Fatimah Defina Setiti Alhamdani; Gita Indah Marthasari; Christian Sri Kusuma Aditya
Jurnal Repositor Vol 3 No 4 (2021): Agustus 2021
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/repositor.v3i4.1378

Abstract

Emas merupakan salah satu alat investasi populer dikalangan masyarakat yang tahan akan inflasi. Namun kegiatan investasi emas memiliki resiko berjenis data time series. Sehingga masyarakat perlu memilliki ilmu sebagai pegangan saat melakukan kegiatan investasi emas yaitu dengan memprediksi harga emas di masa depan untuk meminimalisasi resiko. Long Short-Term Memory merupakan turunan dari metode RNN yang dapat digunakan dalam memprediksi pada data time series. Penelitian ini bertujuan untuk memprediksi harga emas dari data time series per 1 hari yang telah dikumpulkan dari website harga-emas.org untuk mengetahui nilai error prediksi menggunakan metode LSTM. Analisis parameter yang dilakukan pada penelitian ini adalah jumlah neuron hidden, learning rate, dan epoch. Kombinasi parameter terbaik yang dihasilkan pada penelitian ini adalah 16 neuron hidden, learning rate 0.01, dan 100 epoch. Nilai terbaik yang dihasilkan pada penelitian ini adalah RMSE 9139,14318 dan MAPE 0,69794%. Perhitungan error MAPE terbaik pada penelitian ini dengan penelitian “Prediksi Harga Emas Menggunakan Feed Forward Neural Network dengan Metode Extreme Learning Machine” yang menghasilkan MAPE terbaik 0,8065%. Hasil tersebut menunjukkan bahwa error MAPE pada penelitian ini lebih baik daripada penelitian tersebut dan model yang terbentuk dapat dikatakan sangat bagus karena nilai MAPE terbaik yang dihasilkan dibawah 10%.
Segmentasi Pelanggan Berdasarkan Perilaku Penggunaan Kartu Kredit Menggunakan Metode K-Means Clustering Fatimah Defina Setiti Alhamdani; Ananda Ayu Dianti; Yufis Azhar
JISKA (Jurnal Informatika Sunan Kalijaga) Vol. 6 No. 2 (2021): Mei 2021
Publisher : UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1183.257 KB) | DOI: 10.14421/jiska.2021.6.2.70-77

Abstract

Credit card is one of the payment media owned by banks in conducting transactions. Credit card issuers provide benefits for banks with interest that must be paid. Credit card issuers also provide losses to banks that have agreed to pay not to pay their credit card bills. To request a loan from the bank, a cluster model is needed. This study, proposing a segmentation system in research using credit cards to determine marketing strategies using the K-Means Clustering method and conducting experiments using the 4 methods namely K-Means, Agglomerative Clustering, GMM, and DBSCAN. Clustering is done using 9000 active credit card user data at banks that have 18 characteristic features. The results of cluster quality accuracy obtained by using the K-Means method are 0.207014 with the number of clusters 3. Based on the results obtained by considering 4 of these methods, the best method for this case is K-Means.