Claim Missing Document
Check
Articles

Found 4 Documents
Search

PEMODELAN PEMANENAN ENERGI LISTRIK DARI MEKANISMEAUTOMATIC CLOSED DOOR Talifatim Machfuroh
G-Tech: Jurnal Teknologi Terapan Vol 1 No 1 (2017): G-Tech, Vol. 1, No. 1, Oktober 2017
Publisher : Universitas Islam Raden Rahmat, Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (510.514 KB) | DOI: 10.33379/gtech.v1i1.265

Abstract

Perkembangan teknologi telah mendorong peningkatan penggunaan energi, terutama penggunaan energi pada bangunan. Alternatif pemenuhan kebutuhan energi bangunan adalah dengan memanfaatkan bagian dari bangunan yang bergerak, untuk sebagai penghasil energi listrik. Untuk itu diperlukan sebuah mekanisme pengkonversi yang dapat mengubah energi getaran mekanis menjadi energi listrik, diantaranya dapat menggunakan: piezoelektrik, elektrostatik dan elektromagnetik. Automatic door closer adalah sebuah alat mekanik yang digunakan untuk menutup pintu sesaat setelah pintu terbuka. Automatic door closer biasanya ditempatkan pada daun pintu bagian atas dan dekat dengan kusen atas pintu. Gerakan dari automatic door closer pada saat membuka dan menutup secara otomatis dapat dimanfaat sebagai pembangkit energi listrik dengan mengghubungkannya pada linier generator. Pada engsel pemutar pada automatic door closer dipasang roda gigi yang dihubungkan dengan roda gigi lain, dimana roda gigi yang kedua dipasangkan dengan rack yang kedua sisinya terdapat magnet yang sudah diberi lilitan. Gelombang magnet tersebut bergerak naik turun melewati kumparan sehingga menghasilkan energi mekanik yang kemudian diubah menjadi energi listrik. Energi listrik ini adalah energi bangkitan dari pergerakan buka tutup dari daun pintu. Dari hasil penelitian ini diketahui bahwa mekanisme automatic door closer dengan penambahan harvesting energy system mampu menghasilkan daya output sebesar 4,68 watt dan voltase yang dihasilkan sebesar 33,5 volt. Daya yang dihasilkan memang relatif kecil dikarenakan input yang diberikan juga kecil. Daya ini dapat untuk menghidupkan lampu-lampu kecil.
ANALISIS VARIASI TEKANAN GAS O₂ TERHADAP WAKTU DAN BIAYA PADA PROSES PEMBUATAN COVER RADIATOR MOTOR DENGAN BAHAN PLAT BAJA MENGGUNAKAN MESIN FIBER LASER CUTTING Duratun Nasiqiati Rosady, Siti; Vany Ramadhany; M.Fauzi Soulton; Sari, Eli Novita; Zakiyah Amalia; Talifatim Machfuroh; Fica Aida Nadhifatul Aini
Jurnal Inovasi Teknologi Manufaktur, Energi dan Otomotif Vol. 2 No. 1 (2023): Jurnal Inovasi Teknologi Manufaktur, Energi, dan Otomotif
Publisher : Politeknik Negeri Banyuwangi

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In the industrial world, especially in the manufacturing industry, there are many technological developments that support better work processes. One of them is cutting technology or cutting machine, which has developed a lot of technology. There are more and more motorbike modifications for the use of transportation on the road or to be contested in motorbike modification competitions. One of them is the modification of the radiator cover which is most often found on motorcycles. Modification of the radiator cover using steel plate material has the advantage that it is stronger than the factory default radiator cover. This research uses an experimental method by varying the pressure of O2 gas then observing, recording and calculating research data. The purpose of this study was to determine the effect of variations in O2 gas pressure on the most optimal production time and estimate the production cost of the radiator cover for the motorcycle. From the results of observations and calculations of time and costs carried out in the radiator cover production process, it is obtained that the production time is 6.32 minutes / product and the production cost is Rp. 95.000,-/product. Keywords: Cover Radiator, production time, production costs.
Influence of MIG Welding Process Parameters on the Strength of Bimetal Joints: Study of Gas Flow Rate and Macrofractures Talifatim Machfuroh; Witono, Kris; Riskitasari, Septyana; Puspitasari, Etik
Logic : Jurnal Rancang Bangun dan Teknologi Vol. 24 No. 3 (2024): November
Publisher : Unit Publikasi Ilmiah, P3M, Politeknik Negeri Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31940/logic.v24i3.141-149

Abstract

Bimetal joints are often used in various industries, such as automotive, power generation, electronics, and manufacturing. This is because bimetal joints allow the joining of two types of metal with different properties. Welding two different types of metal can pose its own challenges, such as the difficulty of controlling welding parameters so that the results are optimal for both types of metal, as well as differences in the thermal and mechanical properties of the two metals. This has led to extensive research on bimetal plate connections. Based on this background, this research aims to determine the effect of variations in flow rate and current strength on the tensile strength of robotic welding bimetal welded joints, as well as determine the results of macro photos of fractures resulting from tensile tests for each variation. The research was carried out experimentally where each variation was repeated with data 3 times. Based on the results and discussion, it is known that the optimal gas flow rate in general is 20 l/min, where the tensile strength reaches 353.1442 MPa–455.5458 MPa. At this flow rate, the dominant fracture occurs in the base metal and is ductile, which indicates good plastic deformation. On the other hand, gas flow that is too low or too high causes joint defects and reduces the tensile strength. Meanwhile, other welding parameters, namely variations in welding current, affect tensile strength. At a gas flow of 10 l/min, increasing the current to 180 A produces the highest tensile strength of 449.4357 MPa with ductile fracture characteristics. However, at a current of 120 A there is a significant decrease due to overheating, especially at higher gas flows such as 20 l/min and 30 l/min, which results in brittle fracture in the heat-affected zone (HAZ). The results of this research contribute to the understanding of the influence of welding parameters on the tensile strength and fracture characteristics of bimetallic joints. This research can be a reference for the development of more efficient and reliable welding processes in various industries, such as automotive, power generation and manufacturing, which require bimetallic joints with optimal quality.
Influence of MIG Welding Process Parameters on the Strength of Bimetal Joints: Study of Gas Flow Rate and Macrofractures Talifatim Machfuroh; Witono, Kris; Riskitasari, Septyana; Puspitasari, Etik
Logic : Jurnal Rancang Bangun dan Teknologi Vol. 24 No. 3 (2024): November
Publisher : Unit Publikasi Ilmiah, P3M, Politeknik Negeri Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31940/logic.v24i3.141-149

Abstract

Bimetal joints are often used in various industries, such as automotive, power generation, electronics, and manufacturing. This is because bimetal joints allow the joining of two types of metal with different properties. Welding two different types of metal can pose its own challenges, such as the difficulty of controlling welding parameters so that the results are optimal for both types of metal, as well as differences in the thermal and mechanical properties of the two metals. This has led to extensive research on bimetal plate connections. Based on this background, this research aims to determine the effect of variations in flow rate and current strength on the tensile strength of robotic welding bimetal welded joints, as well as determine the results of macro photos of fractures resulting from tensile tests for each variation. The research was carried out experimentally where each variation was repeated with data 3 times. Based on the results and discussion, it is known that the optimal gas flow rate in general is 20 l/min, where the tensile strength reaches 353.1442 MPa–455.5458 MPa. At this flow rate, the dominant fracture occurs in the base metal and is ductile, which indicates good plastic deformation. On the other hand, gas flow that is too low or too high causes joint defects and reduces the tensile strength. Meanwhile, other welding parameters, namely variations in welding current, affect tensile strength. At a gas flow of 10 l/min, increasing the current to 180 A produces the highest tensile strength of 449.4357 MPa with ductile fracture characteristics. However, at a current of 120 A there is a significant decrease due to overheating, especially at higher gas flows such as 20 l/min and 30 l/min, which results in brittle fracture in the heat-affected zone (HAZ). The results of this research contribute to the understanding of the influence of welding parameters on the tensile strength and fracture characteristics of bimetallic joints. This research can be a reference for the development of more efficient and reliable welding processes in various industries, such as automotive, power generation and manufacturing, which require bimetallic joints with optimal quality.