Claim Missing Document
Check
Articles

Found 20 Documents
Search

SDN-Based Network Intrusion Detection as DDoS defense system for Virtualization Environment Saifudin Usman; Idris Winarno; Amang Sudarsono
EMITTER International Journal of Engineering Technology Vol 9 No 2 (2021)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v9i2.616

Abstract

Nowadays, DDoS attacks are often aimed at cloud computing environments, as more people use virtualization servers. With so many Nodes and distributed services, it will be challenging to rely solely on conventional networks to control and monitor intrusions. We design and deploy DDoS attack defense systems in virtualization environments based on Software-defined Networking (SDN) by combining signature-based Network Intrusion Detection Systems (NIDS) and sampled flow (sFlow). These techniques are practically tested and evaluated on the Proxmox production Virtualization Environment testbed, adding High Availability capabilities to the Controller. The evaluation results show that it promptly detects several types of DDoS attacks and mitigates their negative impact on network performance. Moreover, it also shows good results on Quality of Service (QoS) parameters such as average packet loss about 0 %, average latency about 0.8 ms, and average bitrate about 860 Mbit/s.
High-Performance Computing on Agriculture: Analysis of Corn Leaf Disease Evianita Dewi Fajrianti; Afis Asryullah Pratama; Jamal Abdul Nasyir; Alfandino Rasyid; Idris Winarno; Sritrusta Sukaridhoto
JOIV : International Journal on Informatics Visualization Vol 6, No 2 (2022)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.6.2.793

Abstract

In some cases, image processing relies on a lot of training data to produce good and accurate models. It can be done to get an accurate model by augmenting the data, adjusting the darkness level of the image, and providing interference to the image. However, the more data that is trained, of course, requires high computational costs. One way that can be done is to add acceleration and parallel communication. This study discusses several scenarios of applying CUDA and MPI to train the 14.04 GB corn leaf disease dataset. The use of CUDA and MPI in the image pre-processing process. The results of the pre-processing image accuracy are 83.37%, while the precision value is 86.18%. In pre-processing using MPI, the load distribution process occurs on each slave, from loading the image to cutting the image to get the features carried out in parallel. The resulting features are combined with the master for linear regression. In the use of CPU and Hybrid without the addition of MPI there is a difference of 2 minutes. Meanwhile, in the usage between CPU MPI and GPU MPI there is a difference of 1 minute. This demonstrates that implementing accelerated and parallel communications can streamline the processing of data sets and save computational costs. In this case, the use of MPI and GPU positively influences the proposed system.
Implementasi dan Analisis Protokol Komunikasi IoT untuk Crowdsensing pada Bidang Kesehatan Ata Amrullah; M. Udin Harun Al Rasyid; Idris Winarno
Jurnal Inovtek Polbeng Seri Informatika Vol 7, No 1 (2022)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/isi.v7i1.2365

Abstract

Perkembangan teknologi informasi dan komunikasi telah menandai berlangsungnya era revolusi industri 4.0. Kemudahan pertukaran data antar perangkat yang bergerak menjadikan paradigma baru pada pengumpulan data terpusat yang disebut crowdsensing. Pada bidang kesehatan, crowdsensing tidak lagi mengandalkan telepon bergerak sebagai perangkat pengumpul informasi karena keterbatasan sensor tertanam pada telepon. Berbagai penelitian menggunakan crowdsensing telah mengandalkan kemampuan dari perangkat Internet of Things (IoT). Crowdsensing pada sektor kesehatan dapat membantu mengumpulkan sumber data yang substansial tentang kondisi kesehatan masyarakat secara umum. Namun, kebanyakan teknik crowdsensing hanya mengandalkan satu protokol komunikasi. Metode ini dapat menyebabkan masalah jika perangkat IoT menggunakan protokol komunikasi yang beragam. Oleh sebab itu, kami mengusulkan arsitektur gateway protokol multi-komunikasi untuk crowdsensing. Ketiga protokol komunikasi yang dijalankan pada gateway adalah MQTT, HTTP dan CoAP. Gateway ini berfungsi untuk menangkap data dari crowdsensor dan mengubah ketiga protokol ke dalam protokol yang sama dengan back-end server di cloud. Hasil pengujian menunjukkan bahwa gateway mampu menerima data dengan baik meskipun ketiga protokol dijalankan secara bersamaan. Protokol CoAP memiliki kinerja yang lebih baik daripada kedua protokol dalam pengujian throughput. Protokol MQTT memiliki performa terbaik pada pengukuran delay.
Pembuatan Sistem Mikroskop Digital Terintegrasi dengan Pengolahan Citra untuk Pengembangan Perangkat Pembelajaran IPA di SMPIT Al Uswah Surabaya Bima Sena Bayu Dewantara; Dadet Pramadihanto; Wahjoe Tjatur Sesulihatien; Amang Sudarsono; Hary Oktavianto; Bambang Sumantri; Idris Winarno
J-Dinamika : Jurnal Pengabdian Masyarakat Vol 7 No 2 (2022): Agustus
Publisher : Politeknik Negeri Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25047/j-dinamika.v7i2.2413

Abstract

Untuk mewujudkan pembelajaran yang baik dan tepat kepada para siswa-siswi peserta didik sehingga dapat meningkatkan pemahaman, pengalaman dan kemampuan siswa-siswi, maka pendidikan yang diterima tidak hanya diperlukan untuk melatih aspek kognitif saja. Namun juga diperlukan untuk membangun kemampuan afektif dan psikomotornya. Oleh karena itu, pembelajaran berbasis praktek di laboratorium perlu untuk diberikan. Kegiatan ini bertujuan untuk membuat sebuah peralatan bantu kepada para siswa-siswi SMPIT Al Uswah Surabaya yaitu perangkat mikroskop digital yang terintegrasi dengan embedded mini PC sehingga hasil observasi/pengamatan yang dilakukan siswa-siswi bisa lebih cepat, akurat dan efisien. Peralatan yang dikembangkan terdiri dari sebuah perangkat mikroskop digital dengan kemampuan pembesaran hingga 1600x, sebuah embedded mini PC, sebuah monitor dan satu set keyboard-mouse wireless terintegrasi. Disamping itu, kami juga mengembangkan aplikasi atau perangkat lunak untuk mendukung fungsi operasional peralatan dengan menggunakan pendekatan pengolahan citra. Diharapkan dengan adanya bantuan dari kegiatan ini, siswa dan siswi SMPIT Al Uswah Surabaya mampu meningkatkan kemampuan dan mendapatkan pengalaman berharga selama menjalani studi di SMPIT tersebut.
Water Quality Control System Based on Web Application for Monitoring Shrimp Cultivation in Sidoarjo, East Java Fariza, Arna; Setiawardhana, Setiawardhana; Dewantara, Bima Sena Bayu; Barakbah, Aliridho; Pramadihanto, Dadet; Winarno, Idris; Badriyah, Tessy; Harsono, Tri; Syarif, Iwan; Sesulihatien, Wahjoe Tjatur; Susanti, Puspasari; Huda, Achmad Thorikul; Rachmawati, Oktavia Citra Resmi; Afifah, Izza Nur; Kurniawan, Rudi; Hamida, Silfiana Nur
GUYUB: Journal of Community Engagement Vol 4, No 3 (2023)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/guyub.v4i3.7245

Abstract

Shrimp farming plays a crucial role to the Indonesian economy, but it is facing challenges from shifting weather patterns and global warming. This research focuses on the development and implementation of a web-based water quality monitoring system for shrimp farming to address these concerns. The research, conducted in collaboration with shrimp farmers in Sidoarjo, East Java, introduces PENS Aquaculture program, which is designed to efficiently monitor pH, salinity, and temperature. The system employs Internet ofThings (IoT) technology, which allows farmers to register several ponds, analyze water parameters, and receive real-time data through tables and graphs. The research takes a mixed-methods approach, integrating quantitative data from IoT devices with qualitative insights gathered through surveys and interviews with shrimp farmers. The study aims to evaluate the influence of IoT technology on shrimp pond quality and its contribution to the production. The findings show that PENS Aquaculture application is helpful in increasing shrimp farming efficiency, providing significant insights for the fisheries and cultural sectors.
Aplikasi Metrik Kesehatan Pribadi dengan Framework hGraph Primajaya, Grezio Arifiyan; Al Rasyid, M. Udin Harun; Winarno, Idris; Nurazmi, Talita Iza
Jurnal Inovtek Polbeng Seri Informatika Vol 9, No 1 (2024)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/isi.v9i1.3776

Abstract

Kesehatan merupakan salah satu indikator untuk mengukur tingkat kesejahteraan masyarakat. Dalam satu dekade terakhir ini, dunia kesehatan mengalami perubahan atau disrupsi yang cukup besar. Perkembangan teknologi di bidang kesehatan saat memerlukan fasilitas yang mempermudah melihat informasi kesehatan seseorang secara cepat dan darimana saja. Penelitian ini bertujuan untuk membuat Aplikasi Metrik Kesehatan Personal dengan framework hGraph. Aplikasi yang dibangun menyajikan data kesehatan berdasarkan label-label kesehatan dan dirangkai menjadi sebuah grafik yang mudah dibaca. Aplikasi menyediakan tiga user yaitu pasien, dokter, dan petugas klinik dengan hak akses yang berbeda-beda. Pasien memiliki fitur profile user untuk melengkapi data diri dan dashboard menampilkan grafik kesehatan dengan menggunakan hGraph. Petugas Klinik memiliki tiga fitur yaitu pasien berisi daftar pasien, daftar dokter. Petugas klinik dapat membuat, mengupdate, dan menghapus semua data pasien dan dokter. Aplikasi Metrik Kesehatan Personal telah berhasil diimplementasikan dengan menggunakan framewok hGraph, software JavaScript, dan database Mongodb. Aplikasi mempermudah dokter untuk melihat rekam medis ketika akan melakukan perawatan kepada pasien-pasiennya dan membuat data rekam medis menjadi catatan digital yang mudah diakses kapan saja dan dimana saja.
QR Code-Based Smart Document Implementation Using Distributed Database And Digital Signature Ayub, Waqas; Winarno, Idris; Sudarsono , Amang
The Indonesian Journal of Computer Science Vol. 13 No. 1 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i1.3673

Abstract

In digitized world, digital documents are essential for information sharing. However, some organizations continue to place their reliance in traditional hard-copy formats concerning about the legitimacy of documents. This study presents an innovative approach to document verification with digital signatures, distributed databases, and QR codes. Using a two-step process for data integrity and document authentication, the study approach entails developing a Smart Document with a QR code and digital signature. For increased security and scalability, the system design distributes hash fragments among several databases using the hash split approach. The system's excellent performance, resistance to sluggish HTTP-based attacks, and effectiveness in document verification are highlighted by the results and debates. The report ends with recommendations for future improvements to strengthen the system's resilience, like implementing more secure database engines and enhancing fault tolerance. In conclusion, this method offers a viable way to verify documents in hardcopy and electronic formats in a secure and scalable manner.
Event-driven integration of electronic medical records with blockchain and InterPlanetary file system Arissabarno, Cahyo; Sukaridhoto, Sritrusta; Winarno, Idris; Putri Nourma Budiarti, Rizqi
Bulletin of Electrical Engineering and Informatics Vol 14, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i3.9355

Abstract

The integrity, security, and accessibility of electronic medical record (EMR) are often compromised by traditional systems, which struggle to ensure data integrity, transparent audit trails, and secure long-term storage. This research addresses these challenges by integrating EMR with a private blockchain and InterPlanetary file system (IPFS) cluster, using change data capture (CDC) for real-time updates and integrate with existing EMR systems, avoiding the need for building new EMR software. Implemented in the OpenEMR framework, the system's performance is evaluated across various processes, including document uploading, sharing, access, deletion, and integrity verification. Testing with anonymized medical records in PDF formats ranging from 1 MB to 100 MB shows that uploading to IPFS takes 0.7 seconds per MB, blockchain transaction processing averages 4.2 seconds, CDC time is 1.1 seconds per MB, and OpenEMR uploads average 0.98 seconds per MB. These results demonstrate significant improvements in data security, integrity, and availability, following the CIA triad principles. The system provides a traceable and secure solution for EMR management.
Cloud Computing-based Shrimp Pond Water Quality Prediction Intelligent Service System Suasono, Zaikhul Sulthon; Setiawardhana, Setiawardhana; Winarno, Idris; Gunawan, Agus Indra
JOIV : International Journal on Informatics Visualization Vol 9, No 4 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.4.2862

Abstract

Maintaining water quality is an essential factor in the success of shrimp farming, particularly in conventional and semi-intensive methods in Indonesian. Poor water quality will affect shrimp's survival, reproduction, development, and harvest yield. In order to furnish data regarding future water quality conditions, This research aims to create an intelligent cloud-based water quality prediction system for shrimp ponds that can provide accurate predictions regarding future water quality conditions. The system utilizes the WQI dataset gathered from four different shrimp farming sites, totaling 408 samples, each location exhibiting a different set of values. The model will be trained using four parameters: pH, DO, salinity, and temperature. The WQI dataset will be pre-processed to address missing data, outliers, and standardization. The water quality prediction model uses three machine learning algorithms: SVM, ANN, and MLR. The model's performance results are evaluated using MAE, RMSE, and R². The results indicate that the ANN model is the most effective, achieving an MAE: 0.4023, RMSE: 0.5336, and R²: 0.7178 for temperature predictions, and an MAE: 0.4080, RMSE: 0.5942, and R²: 0.5997 for salinity. The SVM model had mixed results for temperature, with an MAE: 0.3645 and RMSE: 0.4823, but it performed poorly for DO, as evidenced by a negative R² of -0.2428. The MLR model provided reasonable temperature predictions MAE: 0.4953, RMSE: 0.6370, R²: 0.5602. Subsequent research endeavors should prioritize the augmentation of the dataset size and the incorporation of temporal dimensions in order to enhance the precision of predictive outcomes.
A Heterogeneous Hybrid Cloud Storage Service Using Storage Gateway with Transfer Acceleration and Diff Algorithm Jamal Abdul Nasyir; Idris Winarno; Udin Harun Al-Rasyid
The Indonesian Journal of Computer Science Vol. 11 No. 2 (2022): The Indonesian Journal of Computer Science
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v11i2.3071

Abstract

Recently, the cloud service has the potential to replace conventional cluster and grid systems. The objective of migrating apps to the cloud is to minimize maintenance and procurement expenses while simultaneously boosting scalability and availability. However, embra=cing cloud technology created some challenges, such as the complexity of cloud storage. In addition, many clients underestimate if it is not plug-and-play. Each vendor has its access methods, and nonstandard application programming interfaces (APIs) make integrated applications, such as archiving or sharing data with cloud storage, complicated, costly, and require high throughput. Furthermore, organizations did not have many alternatives for implementing high-performance object storage systems in the cloud and on-premises data centers until now. In this paper, we would like to suggest a storage gateway as a solution to this issue and will optimize it using Transfer Acceleration and Diff algorithms to improve the performance, Intelligent Tiering to reduce costs, and Server-Side encryption for extra protection. Moreover, utilizing Storage Gateway has proven can provide more efficient integration between the on-premises data center environment and the AWS Cloud Storage ecosystem that is safer and more reliable. This technology can work in a common data center environment regardless of the vendor used by the company it can communicate seamlessly with the AWS Environment.