Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Traffic sign detection optimization using color and shape segmentation as pre-processing system Handoko Handoko; Jehoshua Hanky Pratama; Banu Wirawan Yohanes
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 1: February 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i1.16281

Abstract

One of performance indicator of an Autonomous Vehicle (AV) is its ability to accomodate rapid environment changing; and performance of traffic sign detection (TSD) system is one of them. A low frame rate of TSD impacts to late decision making and may cause to a fatal accident. Meanwhile, adding any GPU to TSD will significantly increases its cost and make it unaffordable. This paper proposed a pre-processing system for TSD which implement a color and a shape segmentation to increase the system speed. These segmentation systems filter input frames such that the number of frames sent to AI system is reduced. As a result, workload of AI system is decreased and its frame rate increases. HSV threshold is used in color segmentation to filter frames with no desired color. This algorithm ignores the saturation when performing color detection. Further, an edge detection feature is employed in shape segmentation to count the total contours of an object. Using German Traffic Sign Recognition Benchmark dataset as model, the pre-processing system filters 97% of frames with no traffic sign objects and has an accuracy of 88%. TSD system proposed allows a frame rate improvement up to 32 FPS when YOLO algorithm is used.
Focused Crawler Optimization Using Genetic Algorithm Banu Wirawan Yohanes; Handoko Handoko; Hartanto Kusuma Wardana
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 9, No 3: December 2011
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v9i3.730

Abstract

As the size of the Web continues to grow, searching it for useful information has become more difficult. Focused crawler intends to explore the Web conform to a specific topic. This paper discusses the problems caused by local searching algorithms. Crawler can be trapped within a limited Web community and overlook suitable Web pages outside its track. A genetic algorithm as a global searching algorithm is modified to address the problems. The genetic algorithm is used to optimize Web crawling and to select more suitable Web pages to be fetched by the crawler. Several evaluation experiments are conducted to examine the effectiveness of the approach. The crawler delivers collections consist of 3396 Web pages from 5390 links which had been visited, or filtering rate of Roulette-Wheel selection at 63% and precision level at 93% in 5 different categories. The result showed that the utilization of genetic algorithm had empowered focused crawler to traverse the Web comprehensively, despite it relatively small collections. Furthermore, it brought up a great potential for building an exemplary collections compared to traditional focused crawling methods.