Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Infotech Journal

PERAMALAN GENRE FILM TERPOPULER BERDASARKAN DATASET MYMOVIE MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) Asrul; Witanti, Wina; Umbara, Fajri Rakhmat
INFOTECH journal Vol. 9 No. 2 (2023)
Publisher : Universitas Majalengka

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31949/infotech.v9i2.7358

Abstract

At this time the film industry is experiencing very rapid progress, this is because extraordinary technological developments have had a major influence on the film industry. Successful films tend to have a large audience. To find out why the audience likes a film, there are several variables that must be considered, one of which is the genre of the film. This research was conducted to predict what film genres the audience is most interested in. To predict the genre of this film using the autoregressive integrated moving average (arima) method. The autoregressive integrated moving average (arima) method or commonly known as the Box-Jenkins method is a method used to make precise and accurate short-term forecasts, compared to long-term forecasts which usually tend to be flat (flat/constant). From this research a prediction of the popularity or number of viewers of each film genre will be generated which can be used as a reference to find out what genre of film the audience is interested in. So that film production companies can adjust film releases according to their interests. audience, in order to gain greater profits.
KLASIFIKASI TINGKAT PENJUALAN VIDEO GAME DENGAN MENGGUNAKAN METODE K – NEAREST NEIGHBORS Adzani, Nadhif Nurul Fajri; Witanti, Wina; Umbara, Fajri Rakhmat
INFOTECH journal Vol. 9 No. 2 (2023)
Publisher : Universitas Majalengka

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31949/infotech.v9i2.7371

Abstract

Klasifikasi Tingkat Penjualan Video Game Dengan Menggunakan Metode K – Nearest Neighbors memiliki fungsi untuk mengklasifikasikan video game berdasarkan penjualannya, dan memerlukan variabel, seperti genre, platform, publisher, best seller. Permasalahan yang terjadi di Platform penjualan game seperti di Steam, Epic games, etc. Adalah dimana saat gamers membeli game tersebut dan ternyata game tersebut tidak sesuai dengan ekspetasi dari gamers yang membeli game tersebut alhasil game tidak lagi dimainkan. Oleh karena itu, solusi yang dibuat disini yaitu klasifikasi video game berdasarkan karakteristik yang menggunakan metode KNN, dimana nantinya video game akan dibagi berdasarkan karakteristiknya, dan akan ditampilkan beberapa game sesuai klasifikasi karakternya, sehingga diharapkan dapat meminimalisir kejadian pembeli game / gamers yang menyesal karena tidak sesuai dengan ekspetasi mereka