Claim Missing Document
Check
Articles

Found 2 Documents
Search

Thermal Properties Investigation of FeCr Alloy Using Lammps Simulation: A Preliminary Study Mardiyanto Mangun Panitra; Syahfandi Ahda; Abu Kahlid Rivai
Majalah Ilmiah Pengkajian Industri Vol. 13 No. 2 (2019): Majalah Ilmiah Pengkajian Industri
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/mipi.v13i2.3401

Abstract

At present, nuclear reactor technology that is widely used because of its proven reliability is the gen-III + nuclear reactor. Even if it is seen from the aspect of safety and reliability of this generation reactor, it has been proven, but because nuclear energy plays a vital role to meet the growing world energy needs, it is necessary to have a type of nuclear reactor that is tailored to those needs.The next generation of nuclear reactors must meet the requirements of fulfilling safety requirements, be flexible, a longer operating life (more than 60 years), more economical. In order for a reactor to produce higher power, a longer operating life and more economical, reactor structure materials which are capable of being operated at high temperatures are needed. The types of materials that are expected to meet these requirements include various types of ferritic / martensite steel, austenite, alloy steel containing nickel, and metal glass materials and ceramic materials. FeCr metal alloys are alloys that form the metals mentioned above, so it is important to conduct research both in simulation and experiment. Molecular Dynamics simulation of FeCr alloys using Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) has been done to explore their thermodynamic characteristics such as heat treatment, solubility of Cr, atomic radial distribution function (RDF). The results of the simulation are illustrated using Visual Molecular Dynamics (VMD) code. 
The Synthesis of PbZr0.52Ti0.48O3 and PbZr0.58Ti0.42O3 Ceramic Powder by Use Molten Salt Method and Its Intermediate Product Analysis Syahfandi Ahda; Mardiyanto Mardiyanto; Agus Taufiq; Marzuki Silalahi
Majalah Ilmiah Pengkajian Industri Vol. 13 No. 3 (2019): Majalah Ilmiah Pengkajian Industri
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/mipi.v13i3.3617

Abstract

Lead zirconat titanate, Pb(Zr1-x,Tix)O3 is a material with high piezoelectric properties and many studies have been carried out in development, in order to improve the materials quality in various applications. Therefore,one of them is the development of synthesis with the molten salt method in this study. Choice of the molten salt method is simply and and not expensive. The salt ratio of NaCl / KCl at 1: 1 in moles as a solvent medium was carried out in synthesizing Pb(Zr1-x,Tix)O3. Likewise, the salt ratio with reactant/basic material was 1: 1 in weight percentages. An intermediate product is obtained if the dynamics of chemical reactions in the diffusion process occur indirectly or in stages. To identify intermediate products in this synthesis process, the sintering temperature has been varied to 575, 675 and 775 oC for samples A, B and C, respectively. The results of these syntheses have been identified and characterized using x-ray diffraction (XRD) methods. The Highscore program using the Rietveld method to identify the intermediate product content and each crystal structure has been applied in the rifenement process on the XRD intensity profile with a statistical error of less than 6%. Intermediate products have been obtained as follows, PbTiO3, PbZrO3 and Zr0.4Ti0.6O3. Whereas sample C has obtained two phases namely PbZr0.52Ti0.48O3 and PbZr0.58Ti0.42O3 with tetragonal (P4mm) and rhombohedral crystal structures (R3c).