Claim Missing Document
Check
Articles

Found 2 Documents
Search

Tinjuan Pustaka Sistematis - Sistem Rekomendasi Menggunakan Collaborative Filtering Fiyas Mahananing Puri; Kusrini Kusrini; Emha Taufiq Luthfi
JURNAL TECNOSCIENZA Vol. 5 No. 1 (2020): TECNOSCIENZA
Publisher : JURNAL TECNOSCIENZA

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pemanfaatan bigdata pada era industry 4.0 telah banyak diterapkan diberbagai bidang untuk membuat sebuah sistem rekomendasi, salah satunya pada bidang bisnis. Collaborative Filtering merupakan salah satu metode yang banyak digunakan pada saat ini untuk menghasilkan sebuah rekomendasi produk. Graph Database pada saat ini sudah menjadi pilihan yang banyak dikombinasikan dengan penggunaan metode Collaborative Filtering. Tujuan dari makalah ini adalah sebagai systematic literatur review untuk menentukan sebuah sistem rekomendasi dengan menggabungkan metode rekomendasi dengan database grafik. Hasil penelitian ini menjawab pertanyaan penelitian (Research Question) sebagai berikut. RQ1: Apakah penggunakan sistem rekomendasi dengan algoritma collaborative filtering mengalami peningkatan? RQ2: Apasajakah fokus dan tujuan penelitian dengan menggunakan collaborative filtering? RQ3: Sub-disiplin ilmu apa yang sering menggunakan collaborative filtering? Sebagai hasil dari tinjauan pustaka, 42 jurnal dipilih sebagai bahan Analisa yang diterbitkan antara tahun 2014 sampai dengan 2019. Hasil penelitian menunjukkan adanya keakuratan tingkat rekomendasi dari metode dan algoritma yang digunakan, dan menjawab pertanyaan selanjutnya (RQ2 dan RQ3). Kata kunci: Sistem Rekomendasi, Collaborative Filtering, Graph Database
DETEKSI WEBSITE PHISHING MENGGUNAKAN TEKNIK FILTER PADA MODEL MACHINE LEARNING Vikky Aprelia Windarni; Anggit Ferdita Nugraha; Surya Tri Atmaja Ramadhani; Dewi Anisa Istiqomah; Fiyas Mahananing Puri; Adi Setiawan
Information System Journal Vol. 6 No. 01 (2023): Information System Journal (INFOS)
Publisher : Universitas Amikom Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24076/infosjournal.2023v6i01.1268

Abstract

Phishing merupakan bentuk serangan pada dunia maya yang cukup popular, dimana pengguna dibuat untukmengunjungi situs web yang tidak sah. Pengguna ditipu untuk mengungkapkan informasi pribadinya sepertiusername, password, informasi kartu kredit dan sebagainya. Maraknya phishing membuat kerugian dalam halprivacy, bahkan terjadi penyalahgunaan data yang menyebabkan kerugian finansial. Tujuan dari penelitian iniadalah peneliti ingin menggunakan machine learning dengan memanfaatkan fitur filter yang ada didalamnya yaitupearson correlation dan menerapkan 3 metode Naïve Bayes, Decision Tree dan Random Forest untuk menentukanmetode yang paling efektif dalam mendeteksi web phishing. Terdapat 4 alur penelitian yang digunakan olehpeneliti, yaitu (1) Tahap persiapan, (2) Metode yang digunakan, (3) Analisa, dan (4) Evaluasi. Dari hasil penelitianini didapatkan bahwa penerapan metode Naïve Bayes memiliki nilai akurasi sebesar 60,4%, metode Decision Treememiliki nilai akurasi 94,4% dan metode Random Forest memiliki akurasi sebesar 96,3%. Sehingga dapatdisimpulkan bahwa metode yang paling efektif untuk mendeteksi web phishing adalah menggunakan RandomForest karena memiliki tingkat akurasi sebesar 96.3%. Pada penelitian selanjutnya dapat dilakukan pada kasusyang sama dengan menggunakan algoritma yang berbeda.