Claim Missing Document
Check
Articles

Found 9 Documents
Search

Pengembangan Perangkat Lunak Prediktor Kanker Payudara Menggunakan Metode Elastic SCAD SVM dan Data DNA Microarray Risky Dwi Listyo Firmansyah; Handayani Tjandrasa; Isye Arieshanti
Jurnal Teknik ITS Vol 1, No 1 (2012)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (391.171 KB) | DOI: 10.12962/j23373539.v1i1.637

Abstract

Kanker payudara (Carcinoma Mammae) merupakan salah satu penyakit kanker dengan angka kematian terbesar di dunia. Prediksi kanker payudara tentunya dapat membantu para penderitanya untuk menghindari berbagai akibat negatif yang dapat ditimbulkannya. Di sisi lain, data DNA Microarray ternyata dapat digunakan untuk diagnosa dini penyakit kanker payudara. Data DNA Microarray mengandung informasi dari DNA yang kemudian direpresentasikan dalam data vektor berdimensi tinggi. Untuk menangani permasalahan prediksi data berdimensi tinggi, Support Vector Machine (SVM) adalah salah satu metode yang cukup handal. Namun, sayangnya SVM tidak dapat mendukung proses seleksi fitur. Padahal, dengan adanya seleksi fitur, proses prediksi data dapat berjalan lebih cepat. Informasi tentang fitur-fitur penting dari suatu data juga dapat diperoleh dengan adanya seleksi fitur. Oleh karena itu, ada sebuah studi lain yang menggabungkan SVM dengan elastic SCAD (penalization method). Pada studi ini dikembangkan perangkat lunak untuk memprediksi kanker payudara berdasarkan model elastic SCAD SVM yang telah diusulkan oleh studi lain tersebut. Berdasarkan uji coba, perangkat lunak yang dikembangkan mampu melakukan prediksi kanker payudara. Hal ini ditunjukkan dengan nilai akurasi sebesar 95,4%. Fitur yang terpakai pun berkurang dari 1213 atribut menjadi 1193 atribut.
Kombinasi Sinyal EEG dan Giroskop untuk Kendali Mobil Virtual dengan Menggunakan Modifikasi ICA dan SVM Ahmad Reza Musthafa; Handayani Tjandrasa
Jurnal Buana Informatika Vol. 7 No. 3 (2016): Jurnal Buana Informatika Volume 7 Nomor 3 Juli 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i3.655

Abstract

Abstract. Electroencephalogram (EEG) signals has been widely researched and developed in many fields of science. EEG signals could be classified into useful information for the application of Brain Computer Interface topic (BCI). In this research, we focus in a topic about driving a car using EEG signal. There are many approaches in EEG signal classification, but some approaches do not robust EEG signals that have many artifacts and have been recorded in real time. This research aims to classify EEG signals to obtain more optimal results, especially EEG signals with many artifacts and can be recorded in realtime. This research uses Emotiv EPOC device to record EEG signals in realtime. In this research, we propose the combination of Automatic Artifact Removal (AAR) and Support Vector Machine (SVM) which has 71% of accuracy that can be applied to drive a virtual car.Keyword: EEG signal classification, automatic artifact removal, brain computer interfaceAbstrak. Penelitian berbasis sinyal Electroencephalogram (EEG) telah banyak diteliti dan dikembangkan pada berbagai bidang ilmu pengetahuan. Sinyal EEG dapat diklasifikasikan ke dalam bentuk informasi untuk pengaplikasian topik Brain Computer Interface (BCI). Pada penelitian ini difokuskan pada topik pengendalian mobil menggunakan perintah sinyal EEG. Terdapat beberapa pendekatan dalam klasifikasi sinyal EEG, tetapi beberapa pendekatan tersebut tidak robust terhadap sinyal EEG yang memiliki banyak artefak dan direkam secara realtime. Penelitian ini bertujuan untuk mengklasifikasikan sinyal EEG dengan hasil lebih optimal, khususnya pada sinyal EEG yang memiliki banyak artefak dan direkam secara realtime. Penelitian ini menggunakan perangkat Emotiv EPOC untuk merekam sinyal EEG secara realtime. Pada penelitian ini diusulkan kombinasi Automatic Artifact Removal (AAR) dan Support Vector Machine (SVM) yang menghasilkan hasil akurasi sebesar 71% untuk klasifikasi sinyal EEG pada kasus pengendalian mobil virtual.Kata Kunci: EEG signal classification, automatic artifact removal, brain computer interface
PREDIKSI PERGERAKAN HARGA SAHAM MENGGUNAKAN SUPPORT VECTOR REGRESSION Lisa Yuli Kurniawati; Handayani Tjandrasa; Isye Arieshanti
Jurnal Simantec Vol 4, No 1 (2014)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/simantec.v4i1.1345

Abstract

ABSTRAKDalam pasar saham, harga suatu saham dapat berubah secara cepat dari waktu ke waktu. Para pemilik saham diharapkan dapat segera memutuskan kapan saham sebaiknya dijual atau tetap dipertahankan. Karenanya prediksi pergerakan harga saham sampai saat ini masih menjadi topik hangat untuk diperbincangkan dalam dunia jual beli saham. Model prediksi pergerakan harga saham yang akurat dapat membantu para investor dalam pertimbangan pengambilan keputusan transaksi saham. Di dalam praktiknya, harga suatu saham dapat diprediksi dengan menggunakankonsep analisa teknikal.Analisa teknikal didasarkan pada prinsip penggunaan data histori harga saham untuk memprediksi pergerakan saham dimasa mendatang.Tujuan penelitian ini adalah mengimplementasikan metode Support Vector Regression dalam analisa teknikal untuk memprediksi pergerakan harga saham di masa mendatang. Support Vector Regression (SVR) merupakan pengembangan dari metode support vector machine untuk kasus regresi. Metode ini mampu mengatasi overfitting serta mampu menunjukkan performa yang bagus.Dari serangkaian uji coba yang dilakukan, dapat disimpulkan bahwa metode SVR dapat memprediksi pergerakan harga saham dengan cukup baik. Hal ini terlihat dari nilai NRMSE terbaik yang didapatkan sebesar 0.14.Kata kunci: Analisa Teknikal,Prediksi harga saham, Regresi, SVR.ABSTRACTInstockmarkets, the priceof a stockcanchangerapidlyover time. The investor may decide when the stock should be sold or retained.For this reason, thestockprice movementpredictionis stilla hot topicto be discussedin the world ofbuying and sellingstocks. The modelwhich was accurate forstockprice movement prediction may help investors inconsideration of the decision-making of stock transactions. In practice, stock price may be predicted with the technical analysis approach. Technical analysisis based on the principle of using historical datat o predict stock price movement in the future. The purpose of this study is to implement Support Vector Regression in technical analysis to predict the movement of stock prices. Support Vector Regression(SVR) was the development of support vector machine for regression case. This method was able to overcome the over fitting and be able to show good performance. From a series of experiments, it can be concluded that the SVR method may predict the movement of stock prices pretty well. It can be seen from the best values of NRMSE is 0,14.Keywords: Technical Analysis, Stock price forecasting, Regression, SVR.
PREDIKSI NILAI DENGAN METODE SPECTRAL CLUSTERING DAN CLUSTERWISE REGRESSION Ahmad Yusuf; Handayani Tjandrasa
Jurnal Simantec Vol 4, No 1 (2014)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/simantec.v4i1.1040

Abstract

ABSTRAKPrediksi nilai adalah hal yang terus dikembangkan dalam penggalian data. Regresi linier merupakan metode dasar dalam memprediksi nilai berdasar variabel-variabel pada data. Salah satu hal yang mempengaruhi kualitas dari hasil regresi adalah persebaran data latih. Data latih terkadang membuat persamaan regresi kurang optimal. Hal ini dapat diantisipasi dengan mengelompokkan data terlebih dahulu kemudian membangun model regresi dari masing-masing kelompok. Pengelompokan data dilakukan dengan menggunakan algoritma Spectral Clustering, sedangkan model regresi dibangun dengan algoritma Clusterwise Regression. Hasil prediksi merupakan hasil perkalian keanggotaan fuzzy data uji dengan persamaan regresi pada masing-masing kelompok. Metode ini diujicobakan terhadap beberapa dataset yang bervariasi yang dibandingkan dengan metode regresi linear biasa. Ukuran pengujian yang digunakan adalah Root Mean Square Error yang menghitung kesalahan dari hasil prediksi. Semakin kecil nilai RMSE suatu metode maka metode tersebut semakin baik. Berdasar pada uji coba yang dilakukan, penggunaan metode yang diusulkan mampu memprediksi nilai dengan kesalahan sekitar 3 sampai 6 persen. Parameter jumlah cluster juga berpengaruh terhadap hasil prediksi yaitu berbanding terbalik dengan nilai RMSE.Kata kunci: Clusterwise Regression, Pengelompokan, Penggalian Data, Prediksi, Regresi, Spectral Clustering.ABSTRACTPredicted values are continuously being developed in data mining. Linear regression is a basic method for predicting the value of variables based on the data. One that affects the quality of the regression is the spread of the data training. Data training sometimes make less optimal regression model. It can be anticipated by clustering the data first and then building the regression model of each cluster. We are using Spectral Clustering for clustering data, whereas regression model is built with Clusterwise Regression algorithm. The prediction result is obtained by multiplying fuzzy membership data testing with the result of regression equation in each group. This method is tested against several variations dataset compared to standard linear regression methods. Measure of the test used is Root Mean Square Error that computes the error of the predicted results. The smaller the RMSE value indicates the method is the better method in predictioning value. Based on experiments performed, the proposed method is able to predict the score with the error about 3 – 6 percent. Number of clusters as parameter affects the prediction, which is inversely proportional to the value of RMSE.Keywords: Clusterwise Regression, Clustering, Data Mining, Prediction, Regression, Spectral Clustering
Optic Nerve Head Segmentation Using Hough Transform and Active Contours Handayani Tjandrasa; Ari Wijayanti; Nanik Suciati
Indonesian Journal of Electrical Engineering and Computer Science Vol 10, No 3: July 2012
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Optic nerve head is part of the retina where ganglion cell axons exit the eye to form the optic nerve. Glaucomatous changes related to loss of the nerve fibers decrease the neuroretinal rim and expand the area and volume of the cup. This study implements  the detection of the optic nerve head in retinal fundus images based on the Hough Transform and Active Contour Models. The process starts with the image enhancement using homomorphic filtering for illumination correction, then proceeds with the removal of blood vessels on the image  to facilitate the subsequent segmentation process. The result of the Hough Transform fitting circle becomes the initial level set for the active contour model. The experimental results show that the implemented segmentation algorithms are capable of segmenting optic nerve head with the average accuracy of 75.56%. DOI: http://dx.doi.org/10.11591/telkomnika.v10i3.614
SINTESA EKSPRESI WAJAH DENGAN MENGGUNAKAN RADIAL BASIS FUNCTION NETWORK Wiwik Anggraeni; Handayani Tjandrasa
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 2, No 2 Juli 2003
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1028.379 KB) | DOI: 10.12962/j24068535.v2i2.a290

Abstract

Pada penelitian yang sebelumnya [4] telah dilakukan penelitian tentang letak-letak (koordinat) facial characteristic points (FCP) yang digunakan sebagai dasar untuk mengenali ekspresi-ekspresi wajah manusia. Diantaranya ada enam ekspresi wajah, yaitu gembira, sedih, marah, takut, terkejut, dan jijik yang digunakan dalam penelitian tersebut. Dengan adanya dasar tersebut, maka dalam penelitian ini penulis berusaha mensintesa ekspresi wajah yang dikategorikan menjadikan enam ekspresi dengan menggunakan facial characteristic points tersebut. Prinsip dasar dari mensintesa ekspresi wajah adalah mencari pemindahan spasial relatif facial characteristic points pada setiap ekspresi. Permasalahan utamanya adalah bagaimana menghasilkan wajah dengan ekspresi tertentu dari sebuah citra input wajah tanpa ekspresi. Dengan menggunakan 30 pasang perpindahan titik FCP, dilakukan training terhadap Radial Basis Function Network (RBFN) 6 x n x 60 (6 input yang merupakan kadar dari keenam ekspresi, n hidden unit, dan 60 output yang merupakan 30 pasang perpindahan FCP, dimana n adalah variabel). RBFN yang telah ditraining dapat menghasilkan perpindahan FCP sesudai dengan ekspresi yang diinputkan. Informasi pemindahan FCP ini kemudian dimasukkan ke dalam algoritma Image Warping bersama-sama dengan citra input wajah tanpa ekspresi untuk menghasilkan citra wajah berekspresi tertentu. Kata kunci : Facial Characteristic Points, Radial Basis Function Network, Sintesa Ekspresi Wajah
REVIEW ALGORITMA SEGMENTASI PEMBULUH DARAH PADA CITRA FUNDUS RETINA MATA UNTUK MEMBANTU DIAGNOSIS DIABETIC RETINOPATHY Ricky Eka Putra; Handayani Tjandrasa; Nanik Suciati
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 10, No 2, Juli 2012
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1870.662 KB) | DOI: 10.12962/j24068535.v10i2.a308

Abstract

Diabetic retinopathy merupakan salah satu penyakit retina mata yang diakibatkan oleh komplikasi dari penyakit diabetes mellitus. Salah satu faktor yang penting dalam pendeteksian diabetic retinopathy adalah pembuluh darah pada retina mata. Pendeteksian pembuluh darah pada retina mata merupakan langkah awal dalam proses diagnosis penyakit diabetic retinopathy. Oleh karena itu suatu algoritma untuk segmentasi pembuluh darah yang tepat dan baik sangatlah diperlukan. Makalah ini membahas dan menganalisa berbagai algoritma dan teknik segmentasi pembuluh darah pada citra fundus retina mata. Makalah ini diharapkan dapat digunakan sebagai bahan referensi dalam memilih metode yang akan digunakan peneliti dalam melakukan segmentasi pembuluh darah yang sangat berguna dalam proses diagnosis penyakit diabetic retinopathy.
IMPROVED DEEP LEARNING ARCHITECTURE WITH BATCH NORMALIZATION FOR EEG SIGNAL PROCESSING Adenuar Purnomo; Handayani Tjandrasa
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 19, No. 1, Januari 2021
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v19i1.a1023

Abstract

Deep learning is commonly used to solve problems such as biomedical problems and many other problems. The most common architecture used to solve those problems is Convolutional Neural Network (CNN) architecture. However, CNN may be prone to overfitting, and the convergence may be slow. One of the methods to overcome the overfitting is batch normalization (BN). BN is commonly used after the convolutional layer. In this study, we proposed a further usage of BN in CNN architecture. BN is not only used after the convolutional layer but also used after the fully connected layer. The proposed architecture is tested to detect types of seizures based on EEG signals. The data used are several sessions of recording signals from many patients. Each recording session produces a recorded EEG signal. EEG signal in each session is first passed through a bandpass filter. Then 26 relevant channels are taken, cut every 2 seconds to be labeled the type of epileptic seizure. The truncated signal is concatenated with the truncated signal from other sessions, divided into two datasets, a large dataset, and a small dataset. Each dataset has four types of seizures. Each dataset is equalized using the undersampling technique. Each dataset is then divided into test and train data to be tested using the proposed architecture. The results show the proposed architecture achieves 46.54% accuracy for the large dataset and 93.33% accuracy for the small dataset. In future studies, the batch normalization parameter will be further investigated to reduce overfitting.
Implementasi Smart CCTV dengan Face Recognition di TK Al-Hikmah Pasuruan Suciati, Nanik; Aldinata Rizky Revanda; Dini Adni Navastara; Chastine Fatichah; Handayani Tjandrasa; Imam Mustafa Kamal; Mochammad Zharif Asyam Marzuqi; Andika Rahman Teja; Fairuuz Azmi Firas; Glenaya; Adhira Riyanti Amanda; Altriska Izzati Khairunnisa Hermawan; Muhammad Alif Satriadhi; Surya Fadli Alamsyah; Rayssa Ravelia; Wan Sabrina Mayzura
Sewagati Vol 9 No 5 (2025)
Publisher : Pusat Publikasi ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j26139960.v9i5.7795

Abstract

Pendidikan anak usia dini merupakan tahap penting yang memberikan stimulasidan pengalaman sesuai perkembangan anak secara fisik, sosial, emosional, kognitif,dan moral. Seiring dengan pesatnya perkembangan teknologi, kebutuhan akansistem pengawasan yang aman dan efektif di lingkungan pendidikan anak semakinmendesak. Kegiatan pengabdian ini bertujuan untuk mengimplementasikan danmemperkenalkan teknologi face recognition berbasis CCTV di TK Al Hikmah Pasuruan.Dua fokus utama dari kegiatan ini adalah: pertama, pemanfaatan Smart CCTVuntuk meningkatkan pengawasan aktivitas belajar dan bermain anak secara real-timeguna menciptakan lingkungan yang lebih aman dan terpantau; kedua, pengenalanteknologi face recognition yang berpotensi digunakan ke depan sebagai sistem pencatatankehadiran guru secara otomatis. Kegiatan ini dilakukan melalui pemasanganperangkat Smart CCTV serta pelatihan intensif bagi para guru dalam mengoperasikandan memahami fungsi teknologi tersebut. Hasil kegiatan menunjukkanbahwa para guru dapat memahami manfaat dan cara penggunaan teknologi CCTVdengan fitur pengenalan wajah, meskipun masih diperlukan pendampingan lanjutanmengingat tingkat literasi teknologi yang berbeda-beda. Di tahun-tahun berikutnya,kegiatan dapat diarahkan pada maintenance perangkat CCTV, pemanfaatan fitur facerecognition untuk pencatatan kehadiran guru secara otomatis, serta eksplorasi penggunaananalisis rekaman video untuk menilai efektivitas kegiatan pembelajaran.