N. Ezaila Alias
Universiti Teknologi Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimization of high-k composite dielectric materials of variable oxide thickness tunnel barrier for nonvolatile memory Farah A.Hamid; Afiq Hamzah; N. Ezaila Alias; Razali Ismail
Indonesian Journal of Electrical Engineering and Computer Science Vol 14, No 2: May 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v14.i2.pp765-772

Abstract

Downscaling the tunnel oxide thickness has become one of the innovative solutions to minimize the operational voltage with better the programming/erasing (P/E) operation time. However, the downscaling technique faces several challenges where the conventional SiO2 tunnel layer has reached its limit. But a practical alternative has been introduced; Variable Oxide Thickness (VARIOT) technology in flash memory has been promising. VARIOT is one of tunnel barrier engineering technology for incorporating the high-k dielectric materials as a composite tunnel barrier. This paper presents the VARIOT concept to determine the optimum set of combination, the equivalent oxide thickness (EOT) and the low-k oxide thickness (Tox) for alternate high-k materials. Fowler-Nordheim (F-N) tunneling coefficients are also extracted for various combinations of VARIOT, where in this work ZrO2, HfO2, Al2O3, La2O3, and Y2O3 are used. The VARIOT optimization is conducted using 3-Dimensional (3D) Silicon Nanowire Field-Effect-Transistor (SiNWFET) device structure and simulated in TCAD Simulation tools. From the simulation results, it has found out that the high-k materials of La2O3 asymmetric stack is the excellent dielectric material among four (4) other dielectric materials; ZrO2, HfO2, Al2O3 and Y2O3 for EOT=4nm and Tox=1nm. 
Compact modeling of strained GAA SiNW Fatimah K. A Hamid; N. Ezaila Alias; R. Ismail; M. Anas Razali
Indonesian Journal of Electrical Engineering and Computer Science Vol 14, No 1: April 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v14.i1.pp241-249

Abstract

Strain-based on advanced MOSFET is a promising candidate for the future of CMOS technology. A numerical model is not favorable compared to a compact model because it cannot be integrated into most simulator software. Thus, a compact model is proposed to overcome the shortcomings in the analytical model. In this paper, a charge-based compact model is presented for long-channel strained Gate-All-Around Silicon Nanowire (GAA SiNW) from an undoped channel to a doped body. The model derivation is based on an inversion charge which has been solved explicitly using the smoothing function. The drain current model is formulated from Pao Sah’s dual integral which is formed in terms of inversion charge at the drain and source terminals. The proposed model has been extensively verified with the numerical simulator data. The strained effect on the electrical parameters are studied based on inversion charge, threshold voltage and current-voltage (I-V) characteristics. Results show that the current, the inversion charge and the threshold voltage can be greatly improved by the strain. The threshold voltage was reduced approximately 40% from the conventional GAA SiNW. Moreover, the inversion charge was improved by 30 % and the on-state current has doubled compared to unstrained device.